Return to search

Exploitation of low value food materials as a novel source of flavour enhancers

There is demand from the food industry for novel savoury seasonings based on low-cost food ingredients, sourced from within the EU. A nucleotide and protein rich spray dried powder which was derived from a Fusarium venenatum fermenter waste stream and food-grade Alphitobius diaperinus with potential as a savoury flavour enhancer was evaluated. Enzymatic digestion of these two raw materials as a source of flavour precursors was evaluated. Serial enzyme combinations, enzyme dosages, sequence of enzyme application, pH, temperature and length of digestion for the liberation of amino acids and nucleotides were optimised for the liberation of taste active compounds. For amino acids, free glutamine (GLN) and glutamic acid (GLU) could be enhanced using a combination of peptidases on both raw materials. Digesting a spray dried powder derived from the fermenter waste stream of Fusarium venenatum with exopeptidase (1% Flavourzyme TM), resulted in an improved yield of GLN (from 0.1 mg/g to 28.9 mg/g powder) and GLU (from 1.71 mg/g to 5.98 mg/g powder). For milled Alphitobius diaperinus, mixed use of exopeptidase (1% Flavourzyme TM) and endopeptidase (2% Alcalase 1.4-fold increased yield of GLU (17.5 mg/g powder) and 1.7-fold increased yield of GLN (1.2 mg/g) as best production was obtained. For nucleotides, digestions of the waste stream with a yeast lytic enzyme (YL-TLTM) followed by a nuclease (RP-1GTM) resulted in the highest 5’-guanosine monophosphate (GMP) and 5’-adenosine monophosphate (AMP) production. Specifically, a 2% and 0.05% treatment by YL-TLTM and RP-1GTM respectively was shown to be optimal, followed by a 0.05% DeamizymeTM treatment for the conversion of AMP to 5’-Inosinic acid (IMP) of 38 mg/g. For the solid digestion of Alphitobius diaperinus, being treated with a nuclease tretment (2% RP-1GTM) followed by a 0.2% DeamizymeTM treatment for the conversion of AMP to IMP, resulted in the highest GMP yield, a 3.5-fold increased (2.6mg/g), and 7.8-fold increased IMP (4.7mg/g) production.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:740695
Date January 2017
CreatorsXia, Wei
PublisherUniversity of Nottingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://eprints.nottingham.ac.uk/48128/

Page generated in 0.0022 seconds