The Northern tamarisk beetle (Diorhabda carinulata) was introduced to the Colorado River Basin in 2004 as a biological control agent for the invasive shrub: tamarisk (Tamarix spp.). Since 2004, D. carinulata has colonized much of the Colorado River Basin, defoliating tamarisk and adapting to local abiotic cues as it has spread across the landscape. I studied the interplay of abiotic cues, tamarisk defoliation, and the population dynamics of D. carinulata along portions of the Colorado, Dolores, and San Juan rivers from 2007-2012. My results suggest that the timing and location of tamarisk defoliation can be predicted based on the abiotic cues of a location (specifically temperature and day length) and the spatial distribution of D. carinulata across the landscape. In contrast, I also found that the spatial distribution of D. carinulata was often a result of D. carinulata abandoning areas where it had defoliated tamarisk at high intensities. I found that larval abundances from the first new generation of D. carinulata produced in a year were positively linearly correlated with defoliation intensities one month later. Comparatively, generations of larvae produced later in the season were correlated with defoliation intensity along a bell curve, in which the number of D. carinulata declined in areas>50% defoliated. The timing of defoliation during the active season was correlated with the arrival of each new generation of larvae. I found the number of generations of D. carinulata produced in a year varied based on spring temperatures and fall day lengths. The timing of when spring temperatures rose above 15°C dictated when D. carinulata could begin reproductive activity, and this in turn resulted in how early in the year tamarisk could become defoliated. Day length cues governing overwintering in D. carinulata appear to have shortened by>30 min. compared to populations of D. carinulata first released in North America in 2001, resulting in longer duration of activity into the fall. We found the range of D. carinulata could grow as much as 62.8±5.6 km in a year along a linear riparian system, and populations of D. carinulata could defoliate between 24±11.2 and 116±11.2 km of river corridor tamarisk in a year.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622863 |
Date | January 2016 |
Creators | Jamison, Levi Ryder, Jamison, Levi Ryder |
Contributors | Mannan, William, van Riper III, Charles, Mannan, William, van Riper III, Charles, Bogan, Michael |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Electronic Thesis |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0021 seconds