Return to search

A Model for Studying Vasogenic Brain Edema

Convection-enhanced delivery (CED) is a proven method for targeted drug delivery to the brain that circumvents the blood-brain barrier (BBB). Little study has been conducted in understanding CED in pathological brain states. This is of importance when dealing with chemotherapeutic agent delivery to brain tumors, where vasogenic edema (VE) exists. The current study aims to characterize a model of VE suitable for studying CED.VE was produced in the right hemisphere of the rat brain using multiple infusions of hyperosmotic mannitol (0.25mL/kg/s over 30 seconds) delivered through the right internal carotid artery. Magnetic resonance imaging (MRI) revealed consistent edema formation and high water levels in the ipsilateral gray and white matter within an hour of the first infusion. Evan's Blue (EB) staining verified that VE has formed. However, apparent diffusion coefficient (ADC) and histological examination revealed also that some possible cytotoxic edema formed.This model provides a reproducible technique for generating a large area of edema for CED study. Further studies with lower doses of mannitol, while titrating to changes in ADC and values for fractional water content, may modify this model with a greater component of VE and less cerebral toxicity.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2030
Date01 January 2006
CreatorsShukla, Anshu
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0018 seconds