Return to search

Resilient planning, task assignment and control for multi-robot systems against plan-deviation attacks

The security of multi-robot systems is critical in various applications such as patrol, transportation, and search and rescue operations, where they face threats from adversaries attempting to gain control of the robots. These compromised robots are significant threats as they allow attackers to steer robots towards forbidden areas without being detected, potentially causing harm or compromising the mission. To address this problem, we propose a resilient planning, task assignment, and control framework. The proposed framework builds a multi-robot plan where robots are designed to get close enough to other robots according to a co-observation schedule, in order to mutually check for abnormal behaviors. For the first part of the thesis, we propose an optimal trajectory solver based on the alternating direction method of multipliers (ADMM) to generate multi-agent trajectories that satisfy spatio-temporal requirements introduced by the co-observation schedules. As part of the formulation, we provide a new reachability constraint to guarantee that, despite adversarial movement by the attacker, a compromised robot cannot reach forbidden areas between co-observations without being detected.

In the second part of the thesis, to further enhance the system's performance, reliability, and robustness, we propose to deploy multiple robots on each route to form sub-teams. A new cross-trajectory co-observation scheme between sub-teams is introduced that preserves the optimal unsecured trajectories. The new planner ensures that at least one robot in each sub-team sticks to the planned trajectories, while sub-teams can constantly exchange robots during the task introducing additional co-observations that can secure originally unsecured routes. We show that the planning of cross-trajectory co-observations can be transformed into a network flow problem and solved using traditional linear program technique. In the final part of the thesis, we show that the introduction of sub-teams also improves the multi-robot system's robustness to unplanned situations, allowing servicing unplanned online events without breaking the security requirements. This is achieved by a distributed task assignment algorithm based on consensus ADMM which can handle tasks with different priorities. The assignment result and security requirements are formulated as spatio-temporal schedules and guaranteed through control barrier function (CBF) based controls.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/46647
Date30 August 2023
CreatorsYang, Ziqi
ContributorsTron, Roberto
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-sa/4.0/

Page generated in 0.0022 seconds