The problem of determining who should do what given a set of tasks and a set of agents is called the task allocation problem. The problem occurs in many multi-agent system applications where a workload of tasks should be shared by a number of agents. In our case, the task allocation problem occurs as an integral part of a larger problem of determining if a task can be delegated from one agent to another. Delegation is the act of handing over the responsibility for something to someone. Previously, a theory for delegation including a delegation speech act has been specified. The speech act specifies the preconditions that must be fulfilled before the delegation can be carried out, and the postconditions that will be true afterward. To actually use the speech act in a multi-agent system, there must be a practical way of determining if the preconditions are true. This can be done by a process that includes solving a complex task allocation problem by the agents involved in the delegation. In this thesis a constraint-based task specification formalism, a complex task allocation algorithm for allocating tasks to unmanned aerial vehicles and a generic collaborative system shell for robotic systems are developed. The three components are used as the basis for a collaborative unmanned aircraft system that uses delegation for distributing and coordinating the agents' execution of complex tasks.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-70536 |
Date | January 2011 |
Creators | Landén, David |
Publisher | Linköpings universitet, KPLAB - Laboratoriet för kunskapsbearbetning, Linköpings universitet, Tekniska högskolan, Linköping : Linköping University Electronic Press |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, monograph, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping Studies in Science and Technology. Thesis, 0280-7971 ; 1506 |
Page generated in 0.0021 seconds