Return to search

A Task-Specific Approach to Computational Imaging System Design

The traditional approach to imaging system design places the sole burden of image formation on optical components. In contrast, a computational imaging system relies on a combination of optics and post-processing to produce the final image and/or output measurement. Therefore, the joint-optimization (JO) of the optical and the post-processing degrees of freedom plays a critical role in the design of computational imaging systems. The JO framework also allows us to incorporate task-specific performance measures to optimize an imaging system for a specific task. In this dissertation, we consider the design of computational imaging systems within a JO framework for two separate tasks: object reconstruction and iris-recognition. The goal of these design studies is to optimize the imaging system to overcome the performance degradations introduced by under-sampled image measurements. Within the JO framework, we engineer the optical point spread function (PSF) of the imager, representing the optical degrees of freedom, in conjunction with the post-processing algorithm parameters to maximize the task performance. For the object reconstruction task, the optimized imaging system achieves a 50% improvement in resolution and nearly 20% lower reconstruction root-mean-square-error (RMSE ) as compared to the un-optimized imaging system. For the iris-recognition task, the optimized imaging system achieves a 33% improvement in false rejection ratio (FRR) for a fixed alarm ratio (FAR) relative to the conventional imaging system. The effect of the performance measures like resolution, RMSE, FRR, and FAR on the optimal design highlights the crucial role of task-specific design metrics in the JO framework. We introduce a fundamental measure of task-specific performance known as task-specific information (TSI), an information-theoretic measure that quantifies the information content of an image measurement relevant to a specific task. A variety of source-models are derived to illustrate the application of a TSI-based analysis to conventional and compressive imaging (CI) systems for various tasks such as target detection and classification. A TSI-based design and optimization framework is also developed and applied to the design of CI systems for the task of target detection, it yields a six-fold performance improvement over the conventional imaging system at low signal-to-noise ratios.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/196003
Date January 2008
CreatorsAshok, Amit
ContributorsNeifeld, Mark A., Neifeld, Mark A., Kostuk, Raymond K., Ryan, William E., Marcellin, Michael W.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0023 seconds