Return to search

Embodied Experiences for Science Learning: A Cognitive Linguistics Exploration of Middle School Students' Language in Learning About Water

I investigated linguistic patterns in middle school students' writing to understand their relevant embodied experiences for learning science. Embodied experiences are those limited by the perceptual and motor constraints of the human body. Recent research indicates student understanding of science needs embodied experiences. Recent emphases of science education researchers in the practices of science suggest that students' understanding of systems and their structure, scale, size, representations, and causality are crosscutting concepts that unify all scientific disciplinary areas. To discern the relationship between linguistic patterns and embodied experiences, I relied on Cognitive Linguistics, a field within cognitive sciences that pays attention to language organization and use assuming that language reflects the human cognitive system. Particularly, I investigated the embodied experiences that 268 middle school students learning about water brought to understanding: i) systems and system structure; ii) scale, size and representations; and iii) causality. Using content analysis, I explored students' language in search of patterns regarding linguistic phenomena described within cognitive linguistics: image schemas, conceptual metaphors, event schemas, semantical roles, and force-dynamics. I found several common embodied experiences organizing students' understanding of crosscutting concepts. Perception of boundaries and change in location and perception of spatial organization in the vertical axis are relevant embodied experiences for students' understanding of systems and system structure. Direct object manipulation and perception of size with and without locomotion are relevant for understanding scale, size and representations. Direct applications of force and consequential perception of movement or change in form are relevant for understanding of causality. I discuss implications of these findings for research and science teaching.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/332761
Date January 2014
CreatorsSalinas Barrios, Ivan Eduardo
ContributorsGunckel, Kristin L., Gunckel, Kristin L., Johnson, Bruce, Marx, Ronald W., Fong, Sandiway
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0015 seconds