Return to search

Designing multi-touch tabletop interaction techniques to support co-located Group Information Management

Co-located group information management (GIM) is a form of groupware with the aim of enabling users to collaboratively find, store, maintain, organise and share personal and/or group information in support of a group activity. Existing systems aimed at partially supporting GIM activities have been implemented on single user devices. These systems make use of asynchronous communication that may hinder collaboration by misinterpretation, information leaks, etc. Few systems exist, with limited functionality, that support co-located GIM. Multi-touch tabletop interaction has given rise to a new approach for supporting Computer Supported Cooperative Work (CSCW). Multi-touch tabletops allow multiple users to naturally interact with a computer device using a shared display and gesture interaction. The tabletop environment also enables users to sit in a natural environment and synchronously communicate without bulky desktops or laptops. Multi-touch tabletops provide the hardware necessary to support co-located GIM. Existing multi-touch interaction techniques were analysed and proved insufficient to support the advanced functional requirements of GIM. The goal of this research was therefore to support co-located GIM by designing new multi-touch tabletop interaction techniques. An architecture was proposed to support co-located GIM with new multi-touch interaction techniques. A software prototype was developed based on the proposed architecture to facilitate the main activities of GIM and to collaboratively compile documents. The prototype was named CollaGIM (Colla – collaborative, GIM – group information management). CollaGIM supports the main activities of GIM using natural gesture interaction on a multi-touch tabletop. An evaluation of the software was conducted by means of a user study where 15 teams of two people participated. High task success rates and user satisfaction results were achieved, which showed that CollaGIM was capable of supporting co-located GIM using the new multi-touch tabletop interaction techniques. CollaGIM also positively supported collaboration between users.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10493
Date January 2013
CreatorsDitta, Mohammed Ali
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatxiii, 151 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.002 seconds