Rapid growth of digitalization has urged Data Centres (DC) to be more energy efficient by recovering waste heat from server racks that would otherwise be wasted. This techno-economic study is focused on upgrading low temperature waste heat from typical Air-Cooled DC for District Heating Network (DHN) market in Stockholm region. The methodology is carried out by four system configurations that are experimented with different historical electricity data, impacts of climate change with simulated weather data, and variations in DHN temperature as the heat supply scenario development. The results show that DC configuration with combination of both free-cooling and waste heat recovery can foster techno-economic benefits by reducing cooling consumption by 55.6%, compared to DC configuration with free-cooling only; and further lowering Power Usage Effectiveness (PUE) from 1.95 to 1.52. Lifecycle Operational Expenditure (LCO) has also been used as the economic indicator to represent the maximum initial investment that data centre should accept when deciding to recover the waste heat to the DHN. Moreover, the new technical Key Performance Indicators (KPIs) were introduced to support the decision-making in the supply of recovered waste heat to DHN. The electricity price was further identified to have greater impact than the effect of climate change for the overall techno-economic performance. On one specific hand, heat supply with Price-Limit scenario concluded that 40.18% of available waste heat from DC is not profitable should it be injected to DHN in the case of low electricity price. In the case when the electricity price is high, the amount of waste heat not injected to DHN increases to 58.57%. / <p>The thesis defense presentation was held digitally on Zoom on June 19th 2023 at 09.00 CEST</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-507504 |
Date | January 2023 |
Creators | Sintong, Jeremy Ericsson |
Publisher | Uppsala universitet, Institutionen för materialvetenskap, European Institute of Innovation and Technology (EIT) InnoEnergy, MSc. Energy Technologies (ENTECH) master student |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | MATVET Energiteknik |
Page generated in 0.0022 seconds