Return to search

Techno-economic modelling of CO2 capture systems for Australian industrial sources.

Australia is recognising that carbon capture and storage (CCS) may be a feasible pathway for addressing increasing levels of CO2 emissions. This thesis presents a preliminary economic assessment and comparison of the capture costs for different Australian CO2 emission sources. The capture technologies evaluated include solvent absorption, pressure swing adsorption (PSA), gas separation membranes and low temperature separation. The capture cost estimated for hydrogen production, IGCC power plants and natural gas processing is less than A$30/tonne CO2 avoided. CO2 capture cost for iron production ranges from A$30 to A$40 per tonne CO2 avoided. Higher costs of A$40 to over A$80 per tonne CO2 avoided were estimated for flue gas streams from pulverised coal and NGCC power plants, oil refineries and cement facilities, and IDGCC synthesis gas. Based on 2004 and 2005 EU ETS carbon prices (A$30 to A$45 per tonne CO2 avoided), the cost of capture using current commercially available absorption technology may deter wide-scale implementation of CCS, in particular for combustion processes. A sensitivity analysis was undertaken to explore the opportunities for reducing costs. The high cost for capture using solvent absorption is dependent on the energy needed for solvent regeneration and the high capital costs. Cost reductions can be achieved by using new low regeneration energy solvents coupled with recycling the waste heat from the absorption process back to the steam cycle, and using low cost ???fit-for-purpose??? equipment. For membrane and PSA technologies, the capture costs are dominated by the flue gas and post-capture compressors. Operating the permeate or desorption stream under vacuum conditions provides significant cost reductions. Improvements in membrane and adsorbent characteristics such as the adsorbent loading or membrane permeability, CO2 selectivity, and lower prices for the membrane or adsorbent material provide further cost benefits. For low partial pressure CO2 streams, capture using low temperature ???anti-sublimation??? separation can be an alternative option. Low costs could be achieved by operating under low pressures and integrating with external sources of waste heat. Applying the cost reductions achievable with technology and process improvements reduces the capture and CCS costs to a level less than current carbon prices, making CCS an attractive mitigation option.

Identiferoai:union.ndltd.org:ADTP/257505
Date January 2007
CreatorsHo, Minh Trang Thi, Chemical Sciences & Engineering, Faculty of Engineering, UNSW
PublisherAwarded by:University of New South Wales. School of Chemical Sciences and Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Minh Trang Thi Ho, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0017 seconds