Return to search

LEFM analysis and fatigue testing of welded structures

<p>Fatigue design of welded structures has always been important for construction equipment manufactures. The product development and manufacturing trends are reduction of lead time, cost and LCC. In manufacturing, improved quality assurance system and automated weld processes will reduce scatter and improve the possibilities for lighter structures with improved performance. At present most fatigue analysis is done using the nominal stress method or by structural testing, sometimes with improved concepts as structural stress or effective notch stress. In this thesis methods for fatigue life assessment, with higher accuracy, have been evaluated on frame structures. </p><p>The main objectives in this thesis is to investigate the utility of LEFM in fatigue assessment of typical welded structures in construction equipment; to verify the accuracy of LEFM with results from fatigue testing of a complex welded structure and to achieve an better understanding of parameters that influence on crack propagation. The purpose was also to compare different fatigue assessment methods, this has been done to some extent but main part of the work has been on LEFM. </p><p>An investigation of the accuracy and efforts in connection with different life prediction methods of welded joints in a complex structure has been done. The investigated structure was a frame to a wheel loader. The life prediction was performed with nominal stress, structural stress, effective notch stress and LEFM. The investigations show a lot of scatter in predicted life for the different methods. </p><p>Fatigue analysis and testing of a welded frame has been performed and discussed. The structure contained typical welds for a frame to a wheel loader. A service load spectrum with an overall stress ratio, R, of about -1 was used. The test results were correlated with LEFM including different assumptions of residual stress distributions. </p><p>In literature survey information useful in fatigue crack propagation analysis are compiled. The disussed concepts are<i> crack closure, threshold values, crack growth material parameters, mixed mode conditions, variable amplitudes, small cracks</i> and<i> residual stresses</i>.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-271
Date January 2005
CreatorsByggnevi, Magnus
PublisherKTH, Aeronautical and Vehicle Engineering
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text
RelationTrita-AVE, 1651-7660 ; 2005:20

Page generated in 0.0105 seconds