Return to search

Effects of cocaine on visual processing in zebrafish

Psychostimulants are known to alter visual function acutely and on withdrawal, and can cause attention deficit following prenatal exposure. However, psychostimulants can also improve visual attention in patients with attention deficit. The mechanisms involved in these contrasting effects remain largely unknown.

To determine the role of specific brain regions and the dopamine system in the impact of cocaine exposure on visual processing, we employed two-photon microscopy and a transgenic larval zebrafish expressing the calcium indicator GCaMP-HS. We documented neuronal responses to contrasting visual stimuli, red light (LF) and dark (DF) flashes.

We found that in the optic tectum neuropil (TOn), both stimuli elicited similar responses, though after repeated stimulus presentation, habituation developed to dark flash only. The dorsal telencephalon (dTe) responded and habituated to LF only. Acute cocaine (0.5 μM) reduced neuronal responses to LF in both brain regions and prevented habituation of dTe neurons to LF, but did not modify responses or habituation to dark flash.

Prenatal cocaine exposure (PCE) did not modify baseline responses, but it prevented the acute effects of cocaine on LF responses in both regions and habituation in
dTe, with no impact on dark flash responses. PCE also significantly reduced D1 dopamine receptor expression in TOn and cerebellum, but not dTe or the eye.

Fish lacking the dopamine transporter (DATKO) retained normal D1 expression throughout the brain, baseline responses to LF in both TOn and dTe, and response reduction following cocaine in TOn. However, they demonstrated abnormal swimming behavior, and neither their swimming behavior nor dTe responses to LF were modified by cocaine.

We discovered that in zebrafish, a diurnal vertebrate, responses to light not only require the primary visual processing center TO (superior colliculus in mammals), but also higher level processing by dTe. Responses to light but not darkness are modified by cocaine, unless the fish lack DAT or were exposed to PCE. Together, our results demonstrate specific effects of cocaine on visual processing mediated by the dopamine system, and provide a novel animal model for further investigation of these phenomena and development of new therapeutic approaches.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/13723
Date03 November 2015
CreatorsRiley, Elizabeth Brooke
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution-NonCommercial 4.0 International, http://creativecommons.org/licenses/by-nd/4.0/

Page generated in 0.0023 seconds