Nesta dissertação, definimos a geometria hiperbólica usando o disco de Poincaré (D2) e o semiplano superior (H2) com as respectivas propriedades. Além disso, apresentamos algumas funções e relações importantes da geometria hiperbólica; conceituamos as superfícies de Riemann, analisando suas propriedades e representações; estudamos o espaço de Teichmüller com a devida decomposição em calças. Esses temas são ferramentas necessárias para atingir o objetivo da dissertação: definir as coordenadas de Fenchel Nielsen como um sistema de coordenadas locais do espaço de Teichmüller Tg. / In this dissertation, we defined the hyperbolic geometry using the Poincares disk (D2) and upper half-plane (H2) with its properties. Besides, we presented some functions and important relations of the hyperbolic geometry; we conceptualize the Riemann surfaces, analyzing its properties and representations; we studied the Teichmüller Space with proper decomposition pants. These themes are essential tools to reach the goal of the work: The definition of the Fenchel Nielsen coordenates as local coordinate system of the Teichmüller space Tg.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-27082015-073617 |
Date | 09 June 2015 |
Creators | Turaça, Angélica |
Contributors | Carvalho, André Salles de |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0015 seconds