This Master's Thesis work in Space Engineering was conducted at NASA Ames Research Center. It is a design concept pre-study on the feasibility of a small plant growth module for the lunar equator, based on theoretical modelling of the radiation thermal balance. The plant that will be used is a dwarf variety of Arabidopsis thaliana, a model organism widely used in plant biology research and the plant growth module will be using ambient light as energy source. The lunar equator imposes a big challenge due to the altered daylight pattern. The lunar day is 14 earth days long at the equator, followed by a 14 earth day period of darkness, which gives high variations in temperature and light intensities. The design for the plant growth module consists of a totally insulated box with a glass roof, tilted on the sides that will be facing the sun. Inside, attached to the roof, is a 45 degrees triangular mirror, providing shade to the plants when the sun is at zenith and reflecting horizontal morning and evening sunlight downwards to the plants. The glass roof is made out of two different types of glasses, with different transmission intervals, so that heat can radiate out from those sides of the roof that will not face the sun. Many different designs were invented and analysed before the final concept was established. This gives an inside temperature of between 5 and 28 degrees Celsius and a PAR level of between 440 and 710 micromoles per square meter and second. Based on the assumptions that were made in the modelling, a plant growth module on the lunar equator seems feasible. However, before further improvements of the details in the model can be done, uncertainties in the parameters have to undergo laboratory testing under lunar similar conditions and be determined. / Validerat; 20101217 (root)
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-41931 |
Date | January 2008 |
Creators | Eriksson, Annika |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0017 seconds