It is well known that the efficiency of a photovoltaic (PV) module is strongly impacted by its temperature such that higher temperatures lead to lower energy conversion efficiencies. An accurate measurement of the temperature de-rating effect, therefore, is vital to the correct interpretation of PV module performance under varied environmental conditions. The current work investigates and compares methods for performing measurements of module temperature both in the lab and in field-test environments. A comparison of several temperature measurement devices was made in order to establish the ideal sensor configuration for quantifying module operating temperature. Sensors were also placed in various locations along a string of up to eight photovoltaic modules to examine the variance in operating temperature with position in the string and within a larger array of strings.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622582 |
Date | 26 September 2016 |
Creators | Elwood, Teri, Bennett, Whit, Lai, Teh, Simmons-Potter, Kelly |
Contributors | Univ Arizona, The Univ. of Arizona (United States), The Univ. of Arizona (United States), The Univ. of Arizona (United States), The Univ. of Arizona (United States) |
Publisher | SPIE-INT SOC OPTICAL ENGINEERING |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016 SPIE |
Relation | http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2237934 |
Page generated in 0.0022 seconds