Return to search

Effective Temperature Control for Industrial Friction Stir Technologies

Systematic investigation of the Friction Stir Welding (FSW) process shows that a fixed rotational velocity and feed rate may not yield uniform mechanical properties along the length of a weldment. Nevertheless, correlations between process parameters and post-weld material properties have successfully demonstrated that peak temperature and cooling rate drive post-weld properties. There have been many reported methodologies for controlling friction stir welding, with varying degrees of cost to implement and effectiveness. However, comparing data from uncontrolled FSW of AA 6111-T4 sheet with controlled FSW at temperatures ranging from 375 °C to 450 °C demonstrates that a simplified methodology of a single-loop PID controlling with spindle speed may be used to effectively control temperature. This methodology can be simply used with any machine that already has the ability to actively control spindle speed, and has been previously shown to be able to be auto-tuned with a single weld. Additionally, implementation of this method compared to uncontrolled FSW in AA6111 at linear weld speeds of 1-2 meters per minute showed improved mechanical properties and greater consistency in properties along the length of the weld under temperature control. Further results indicate that a minimum spindle rpm may exist above which tensile specimens did not fracture within the weld centerline, regardless of temperature. This work demonstrates that a straight-forward, PID-based implementation of temperature control at high weld rates can produce high quality welds with auto-tuned gains. This method also shows promise in application to other processes in the Friction Stir family, and preliminary results in an application to the Additive Friction Stir Deposition (AFSD) process are also presented.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-10143
Date14 June 2021
CreatorsWright, Arnold David
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttps://lib.byu.edu/about/copyright/

Page generated in 0.0016 seconds