In this study, the method of deciding the water level of the initial tsunami is proposed by using spatial-temporal focusing (Coalescence) theory and waveform inversion reciprocal with Green function. Tsunami and earthquake are so closely bonded that the current tsunami numerical model is dependent on the parameters of the fault and the initial tsunami water level by calculating the theory of
half flexibility. But in fact, it is not easy to have the parameters of seabed fault so that the initial tsunami water level is very hard to get a accurate value. On the other hand, although the parameters of fault can be speculated by seismic waves, because ground is uneven medium, therefore, it is still a lot of improvement to get the parameters of fault by using seismic waves. For the tsunami simulation, if you have the value of the initial tsunami water level, the fault parameters can be estimated.Since the propagation of tsunami in the ocean is a linear behavior, the propagating process is affected by the topography of the ocean and the nonlinear effect
so minimal that it is to satisfy the linear shallow water equations and the requirement of reversibility;However, in fact, the values of the water level measured by the tide stations on the coast are influenced by the shoaling effect so that the reversibility of linear system can not be directly applied to Coastal areas.Therefore, the overall Inversion procedure on this study consists of two parts; the first one is that the usage of variable
coefficient Korteweg-de Vries (vKdV) equation and the Coalescence theory inverses the data gathered by the Coastal tide stations to the water level data where the depth is more than 50m on the linear region, and compares the above results with the stimulation and confirms the accuracy of the inversed waveform;The second one is that according to the reversibility of the linear system the use of least squares and least squares QR- decomposition (LSQR) method reproduce the initial tsunami wave source that compares with the initial tsunami wave source by stimulating and has a very good conformity. The seismic parameters can be easily decided by the above results.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0413111-155428 |
Date | 13 April 2011 |
Creators | Li, Lieh-Yu |
Contributors | yang-yi chen, guan-yu chen, hsin-hong chen |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0413111-155428 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0024 seconds