Dans cette thèse, on s'intéresse à la notion de temps fort de stationnarité et à celle, étroitement liée, de dual de stationnarité forte. Ces outils permettent d'étu- dier la convergence de processus ergodiques, en déterminant un instant aléatoire où l'équilibre est atteint. Les espaces d'état des processus considérés ici sont des graphes continus ou discrets. Dans la première partie, on considère le cas discret, et on dégage une condition nécessaire et suffisante à l'existence, pour n'importe quelle loi initiale, d'un temps fort de stationnarité fini. Pour cela, on construit explicitement un dual de station- narité forte, à valeurs dans l'ensemble des parties connexes du graphe, qui évolue à chaque étape en ajoutant ou en enlevant des points de sa frontière. Lorsque cette opération sépare l'ensemble dual en plusieurs parties, afin de ne pas le déconnecter, une de ces parties est choisie au hasard, avec une probabilité proportionnelle à son poids par la mesure invariante. On s'intéresse également au comportement général d'un processus dual, et on donne quelques exemples différents de celui construit précédemment. Dans la deuxième partie, on traite le cas continu, et le processus étudié est alors une diffusion. On caractérise notamment sa mesure invariante, et on explicite un générateur infinitésimal qui devrait être celui d'un processus dual. Néanmoins, ce cas s'avère plus compliqué que le cas discret. Le processus dual n'est donc construit que pour un mouvement brownien sur un graphe particulier, comme l'unique so- lution d'un problème de martingale. Des pistes sont présentées pour traiter des diffusions sur des graphes plus généraux, notamment en utilisant la convergence d'une suite de processus de saut tels que ceux présentés dans la première partie. / In this thesis, we are interested in the notion of strong stationary time, and in that, strongly connected, of strong stationary dual. These tools allow to study the convergence of ergodic processes, by determining a random time when the equilibrium is reached. The state space of the considered processes are discrete or continuous graphs. In the first part, we consider the discrete case, and we explicit a necessary and sufficient condition to the existence, for any initial distribution, of a finite strong stationary time. To do so, we construct explicitly a strong stationary dual, with values in the set of connected subsets of the graph, which evolves at each step by adding or removing some points at its border. Whenever this operation separates the dual set in several parts, in order not to disconnect it, one of these parts is chosen randomly, with a probability proportionnal to its weight relative to the invariant distribution. We also study the general behaviour of any dual process,2 and we give some other examples. In the second part, we deal with the continuous case, and the studied process is then a diffuion. We caracterize its invariant distribution, and we explicit an infinitesimal generator, which is expected to be that of a dual process. Nevertheless, this case turns out to be a little more involved that the discrete one. The dual process is thus constructed only for a brownian motion on a particular graph, as the unique solution of a martingale problem. Some leads are given to solve the case of diffusions on more general graphs, especially by using the convergence of a sequence of jump processes such as those presented in the first part.
Identifer | oai:union.ndltd.org:theses.fr/2018TOU30088 |
Date | 19 July 2018 |
Creators | Copros, Guillaume |
Contributors | Toulouse 3, Miclo, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds