A direct bone tendon junction consists of four zones: tendon, uncalcified fibrocartilage, calcified fibrocartilage, and bone. The uncalcified and calcified fibrocartilage together forms the transition zone. This organization ensures a gradual transition in stiffness and material properties, and protects the junction from failure. Transition zone regeneration during bone tendon junction healing is important to restore this unique protective mechanism. / Bone tendon junction repair is involved in many orthopaedic reconstructive procedures. Healing is observed to be slow. The junction often heals by fibrous tissue formation. Previous attempts to enhance bone tendon junction healing have resulted in increased bone formation. However, fibrocartilage transition zone is not restored. / This thesis describes a series of studies on transition zone regeneration in bone tendon junction healing using two partial patellectomy animal models. The healing process inside a bone trough was first studied and characterized. Little transition zone regeneration was observed except near the articular cartilage cut surface. The possibility of using articular cartilage to stimulate transition zone regeneration was explored. Both articular cartilage autograft and allogeneic cultured chondrocyte pellet implantations resulted in significantly increased fibrocartilage transition zone regeneration. Cell tracking indicated that the regenerated tissue likely originated from host cells. To elucidate the mechanism of stimulation by allogeneic cultured chondrocyte pellet, the role of cellular and matrix component needed to be differentiated. Freezing and rapid freeze thaw cycles permanently devitalized the allogeneic cultured chondrocyte pellet, but retained its structural integrity and matrix contents. Preliminary results indicated that implantation of the devitalized allogeneic cultured chondrocyte pellet could still increase fibrocartilage transition zone regeneration. Cellular activity seemed not to be essential for the stimulatory effect. / With further research and development, it is envisioned that a cartilage-based stimulation method for fibrocartilage transition zone regeneration in bone tendon junction healing will be developed for clinical application. / Wong Wan Nar, Margaret. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3423. / Thesis (M.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 216-231). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344211 |
Date | January 2008 |
Contributors | Wong, Wan Nar., Chinese University of Hong Kong Graduate School. Division of Medicine. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (xxxvi, 234 leaves : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0027 seconds