Return to search

Contribution to the understanding and the improvement of the physico-chemical and techno-functional properties of whey by alkaline electro-activation treatment and complexation with canola proteins

La croissance de la population mondiale et l'évolution des habitudes alimentaires dans tous les pays vers une plus grande consommation d'aliments à base de protéines augmentent les préoccupations à l'échelle planétaire en ce qui concerne le risque de pénurie de protéines. Ceci est à son tour un facteur qui encourage la nécessité de mener des recherches approfondies et structurées pour trouver de nouvelles sources de protéines durables et de mieux valoriser les protéines existantes. Cependant, certaines protéines, notamment de source végétale, sont caractérisées par de médiocres propriétés fonctionnelles et ne permettent pas d'obtenir les aspects techno-fonctionnels souhaités dans les systèmes alimentaires. Afin de remédier à cet inconvénient, l'application de traitements alcalins pour modifier ces protéines et les transformer en ingrédients fonctionnels suscite un grand intérêt depuis quelques années. Ainsi, le présent projet a été réalisé dans un objectif d'utiliser la technologie d'électro-activation en solution comme traitement innovant, original et efficace pour une valorisation intégrale des ingrédients du lactosérum. En effet, le lactosérum en tant que co-produit de la production fromagère contient des composants de haute valeur nutritionnelle et technologique, notamment les protéines, mais aussi le lactose qui peut être utilisé pour produire des sucres à haute valeur ajoutée comme le lactulose qui est un prébiotique reconnu. La première étape de ce travail visait à déterminer l'impact du traitement d'électro-activation alcaline (EA) sur les propriétés physico-chimiques et fonctionnelles du lactosérum doux. L'impact de l'EA alcaline sur la solubilité des protéines, le moussage et les caractéristiques émulsifiantes du lactosérum a été également étudié. Le procédé de l'EA a amélioré la solubilité des protéines dans la plage de pH de 4,0 à 7,0. Contrairement aux échantillons de lactosérum non traités, qui formaient des émulsions micrométriques et instables à pH 3, les échantillons de lactosérum EA produisaient des émulsions nanométriques et stables à ce pH. De plus, bien que le lactosérum non traité et le lactosérum EA produisaient des émulsions stables à pH 7, les émulsions préparées avec le lactosérum EA avaient des tailles de particules plus petites et étaient plus stables contre la floculation des gouttelettes. Le lactosérum traité à l'EA avait tendance à générer des mousses avec un foisonnement et une stabilité significativement plus élevée. La présente étude a démontré que l'EA pouvait améliorer la fonctionnalité du lactosérum doux. Les protéines végétales sont de plus en plus populaires en raison de leurs bienfaits pour la santé et de leur durabilité. Cependant, comparativement aux protéines animales, les protéines végétales comme celles de canola ont une faible solubilité et des propriétés techno-fonctionnelles qui doivent être améliorées, ce qui les rend inefficaces en tant qu'ingrédients dans la formulation de différents aliments. Ainsi, dans le cadre du présent projet, le deuxième volet consistait à mener des études pour produire des protéines de canola solubles et fonctionnelles par complexation avec des protéines de lactosérum en utilisant la technologie d'électro-activation (AE) en solution. Les résultats obtenus ont permis de démontrer que la présence de lactosérum lors du traitement alcalin par EA de la solution de protéines de canola provoquait des interactions structurelles entre les protéines du lactosérum et les protéines de canola, conduisant au développement de nouveaux complexes de protéines qui sont caractérisés par un haut degré de solubilité et des propriétés émulsifiantes et gélifiantes nettement plus élevées que l'échantillon de canola non traité ou celui ayant subi un traitement par EA. En plus, par rapport aux protéines de canola non traitées qui présentaient une solubilité des protéines inférieure à 25 %, une faible capacité moussante, ainsi qu'une faible capacité d'émulsification et de gélification, les mélanges de canola/lactosérum traités par l'EA ont montré une solubilité des protéines d'environ 100 %, une capacité moussante de 300 %, une capacité de former des émulsions stables pendant 30 jours. Le troisième volet de ce projet a permis de démontrer que le traitement par électro-activation cathodique du lactosérum et des protéines de canola a permis de former un complexe qui est caractérisé par un fort pouvoir de gélification, ce qui constitue une contribution significative à l'amélioration du potentiel d'une co-utilisation des protéines de canola et du lactosérum pour la formulation d'aliments de type gel. Finalement, ce projet a apporté une contribution significative à l'avancement des connaissances sur le potentiel d'utilisation de la technologie d'électro-activation en solution pour la modification alcaline des protéines de lactosérum et du canola en vue d'améliorer leurs propriétés techno-fonctionnelles et de les utiliser comme ingrédients dans la formulation des aliments. En plus, il a été démontré que les traitements alcalins par électro-activation en solution peuvent être utilisés comme méthodes d'alcalinisation sans produits chimiques pour améliorer la solubilité et les propriétés fonctionnelles des protéines de canola et de leur mélange avec le lactosérum. / The growth of the world population (over 30% of the existing 7.5 billion people estimated by 2050) and shifts in global eating patterns towards higher consumption of protein-based foods increase worldwide concerns on protein shortage and encourage extensive research to find new sustainable protein sources, which encourages research to recover protein from sustainable sources and valorization of existing protein sources. However, some proteins show poor functionalities in food systems and fail to provide expected functionality in food systems. The application of alkaline treatments to modify these proteins to convert them into functional ingredients has aroused great interest in recent years. The purpose of this study was to explore the electro-activation technology as an innovative alkalinity method to characteristically valorize whey components. Whey as a by-product of cheese and casein manufacturing contains several valuable components, which have demonstrated promising biological and functional properties. The first step of this work aimed to determine the impact of alkaline electro-activation (EA) treatment on physicochemical and functional properties of sweet whey. The impact of alkaline EA on the protein solubility, foaming, and emulsifying characteristics of whey was investigated. The EA process improved the protein solubility at the pH range of 4.0-7.0. In contrast to untreated whey samples, which formed micron-sized and unstable emulsions at pH 3, EA-whey produced nano-sized and stable emulsions at this pH. EA-treated whey tended to generate foams with significantly higher over run and stability. This study demonstrated that EA could enhance the protein solubility of functionality of sweet whey. Further studies were carried out to produce highly soluble and functional canola proteins through pH shifting-driven complexation with whey proteins by chemical-free alkaline electro-activation. Plant proteins are becoming more popular due to their health benefits and sustainability. Compared to animal proteins, canola proteins have poor solubility and functionality, which make them in effective in food formulation. In the second part of the study, whey protein and canola protein were grafted together to create soluble protein composite with superior functionality. Sweet whey was used as a low-price source of animal protein to modify the canola proteins. It was found that the alkaline EA treatment was very effective in functionality improvement of both canola protein alone solution and their mixtures. Further more, the results suggested the presence of whey during the alkaline EA treatment of canola protein solution caused the structural alteration of canola proteins, and formation of protein particles with smaller size and higher surface charge. It resulted in the creation of novel composites proteins with superior solubility and emulsifying properties compared to the EA-treated canola alone sample. This enhanced solubility and emulsifying properties was concluded to be a result of lactose grating on the protein backbone of canola proteins. The overrun of canola protein alone solution increase from 100% to more than 500% after EA-treatment. However, the presence of whey in the EA-treated whey/canola protein solution slightly decreased the foam over run of the sample compared to EA-treated canola alone sample, possibly due to grafting lactose onto the surface of the proteins, resulting in a lower protein surface hydrophobicity. This study showed that the alkaline EA treatment was an effective process to enhance the solubility and functionality of canola proteins and their mixture with whey. In third part of the study, the consequences of alkaline electro-activation (EA) treatment on the flow behavior and gelling properties of canola protein and the mixture of sweet whey/canola protein. Canola protein alone (C) and whey/canola protein mixed suspensions (CW) were treated in an alkalizing electro-activation reactor and then naturalized to neutral pH. The alkaline EA treatment resulted in the production of small aggregates crosslinked by disulfide and covalent bonds. The gelation experiments showed that the EA-treated canola protein and whey/canola protein samples had a superior capacity to develop an integrated gel structure with higher mechanical and rheological properties and improved water holding capacity compared to the untreated samples. Characterization of interactions involved in the gel network structure suggested that the strong covalent interactions played a prominent role in the network of these EA-treated samples. The SDS-PAGE pattern of the gels made from EA-treated canola protein and whey/canola protein samples confirmed the presence of intensive protein polymerization through covalent crosslinking in these gels. The results of this part of the study suggest that the alkaline EA treatment is an effective tool for improving the gelation properties of canola proteins and producing whey/canola protein composite gels with improved functionality. Taken together, the current study showed that alkaline EA treatments can be used as chemical-free alkalinization methods to enhance the solubility, emulsifying and foaming properties, and gelation capacity, sweat whey, canola protein, and the mixture whey and canola protein.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/108510
Date12 November 2023
CreatorsMomen, Shima
ContributorsAider, Mohammed, Hammami, Riadh
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Thèse de doctorat
Format1 ressource en ligne (xxi, 190 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0033 seconds