Carbon nanotube (CNT)/polymer composite sheets can be extremely high strength and lightweight, which makes them attractive for fabrication of mechanical structures. This thesis demonstrates a method whereby smooth, thin CNT/polymer composite sheets can be fabricated and patterned on the microscale using a process of photolithography and plasma etching. CNT/polymer composites were made from CNTs grown using chemical vapor deposition using supported catalyst growth and floating catalyst growth. The composite sheets had a roughness of approximately 30nm and were about 61¼m or 261¼m depending on whether they were made from supported catalyst grown or floating catalyst grown CNTs. The composites were patterned using an oxygen plasma as the etchant and a hard mask of silicon nitride.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6922 |
Date | 01 June 2016 |
Creators | Boyer, Nathan Edward |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | All Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0037 seconds