Introduction Un fluide supercritique (SCF) est une substance dont la température et la pression sont à la fois au-dessus de leurs valeurs essentielles qui sont définies comme le point critique. Le point critique (Pc) désigne le point où les phases gaz, liquide et phase supercritique coexistent et il peut être observé expérimentalement par une opacité critique. Les propriétés des SCFs sont différentes de celles des liquides et des gaz ordinaires. Près de la densité critique, les SCFs affichent des propriétés qui sont dans une certaine mesure intermédiaire entre celles d'un liquide et un gaz. Parmi les fluides supercritiques, le scCO2 a certainement un excellent potentiel de développement pratique en raison de ses faibles conditions critiques (Tc = 31 °C, Pc = 74 bars), et en raison de la nature non-polaire et faible des forces de van der Waals impliquant le CO2. Les espèces hydrophiles (tels que des acides aminés, des protéines et de nombreux catalyseurs) sont souvent insolubles dans le scCO2. De toute évidence, il existe une limitation de l'application de dioxyde de carbone supercritique. Récemment, dans le but de remédier à cet inconvénient, une approche plus efficace consiste à utiliser des tensioactifs appropriés pour produire des micro-émulsions eau/CO2 ou micelles inverses. Consan et Smith ont testé la solubilité de plus de 130 agents tensioactifs disponibles dans le commerce dans le scCO2 à 50 °C et de 10 à 50 MPa. Tous sont très peu solubles ou seulement légèrement solubles dans le scCO2, de sorte qu'ils ne pouvaient pas être utilisés comme surfactants pour ce milieu. Toutefois, certains matériaux non polaires de bas poids moléculaire peuvent se dissoudre dans le scCO2, et sont utilisés avec succès pour divers procédés industriels tels que l'extraction par fluide supercritique, la chromatographie en fluide supercritique et en tant que milieu réactionnel. / Supercritical fluid is a substance whose temperature and pressure are both above their critical values which are defined as the critical point. Similarly to the triple point which defines the zero-variance point for the solid, gas and liquid states, the critical point (Pc) denotes the point where the gas, liquid and supercritical phases coexist and it can be experimentally observed through a critical opacity. Properties of SCFs are different from those of ordinary liquids and gases. Close to the critical density, SCFs display properties that are to some extent intermediate between those of a liquid and a gas. For example, a SCF may be relatively dense and dissolve certain solids while being miscible with permanent gases and exhibiting high diffusivity and low viscosity. In addition, SCFs are highly compressible and the density (and therefore solvent properties) can be "tuned" over a wide range by varying pressures and temperatures. Among supercritical fluids, scCO2 certainly has excellent potential for practical development not only because of its low critical conditions (Tc = 31 °C, Pc = 74 bar), but also due to some other factors such as: CO2 is non-toxic. Its threshold air concentration for working conditions is as high as 5000 ppm. By means of comparison, a daily exposition to 10 ppm of chloroform is considered hazardous. CO2 is non-flammable. This constitutes another very competitive advantage compared to halogenated solvents. Its high pressure vapour-superior to 60 bar-allows its complete removal from processed materials. Thus, CO2 is one of the two solvents fully approved by the Food and Drug Administration (FDA), along with water. CO2 has a low reactivity and is inert towards oxidation. It is also a non-transferring species for radicals. Heat and mass transfer are significantly enhanced in scCO2 due to its properties of low viscosity and densities. Its low surface tension allows wetting structured materials better than liquids usually do. However, besides the cost of high-pressure vessels, CO2 still has intrinsic physical disadvantages: A low cohesive energy density which confers a weak solvent strength to CO2. CO2 is a Lewis acid through its electron-deficient carbon. It thus reacts reversibly with strong Lewis bases such as primary and secondary amines. But this can be turned into an advantageous property for the capture of CO2 by amine-based solvents and surfactants, polymers and solvents that possess CO2-responsive moieties such as guanidines and amidines. CO2 is a poison for Ziegler-Natta and palladium-based catalysts due to the formation of CO. Due to the non-polar and weak Van der Waals forces of CO2, most lipophilic and hydrophilic species (such as amino acids, proteins and many catalysts) are often insoluble in scCO2. Obviously, it is a limitation for the application of supercritical carbon dioxide. Recently, in order to overcome this disadvantage, the most effective approach is to use suitable surfactants to produce water-in-CO2 microemulsions or reverse micelles. Consan and Smith tested the solubility of over 130 commercially available surfactants in scCO2 at 50 °C and 10-50 MPa. All of them were rarely soluble or only slightly soluble in scCO2, so they could not be employed as surfactants in scCO2.
Identifer | oai:union.ndltd.org:theses.fr/2015TOU30092 |
Date | 17 September 2015 |
Creators | Liu, Xuan |
Contributors | Toulouse 3, Destarac, Mathias, Marty, Jean-Daniel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds