Orientador: João Peres Vieira / Banca: Daniel Vendrúscolo / Banca: Thiago de Melo / Resumo: O principal objetivo deste trabalho é demonstrar teoremas relevantes como o Teorema Fundamental da Álgebra e o Teorema do Ponto Fixo de Brouwer no plano, além dos problemas de extensão e levantamento e o Teorema de Mayer-Vietoris. Para isto, primeiramente associamos a cada espaço topológico X uma estrutura de grupo ou de conjunto G(X), e a cada função contínua f : X → Y um homomor smo de estruturas f∗ : G(X) → G(Y ) ou f∗ : G(Y ) → G(X) satisfazendo determinadas propriedades / Abstract: The main objective is to prove relevant theorems as the Fundamental Theorem of Algebra and Brouwer's Fixed Point Theorem in the plane, besides the problems of extension and lifting theorem and the Mayer-Vietoris Theorem. For this, rst we associate to each topological space X a group structure or set G(X), and every continuous function f : X → Y a homomorphism f∗ : G(X) → G(Y ) or f∗ : G(Y ) → G(X) satisfying certain properties / Mestre
Identifer | oai:union.ndltd.org:UNESP/oai:www.athena.biblioteca.unesp.br:UEP01-000676012 |
Date | January 2011 |
Creators | Araújo, Judith de Paula. |
Contributors | Universidade Estadual Paulista "Júlio de Mesquita Filho" Instituto de Geociências e Ciências Exatas. |
Publisher | Rio Claro : [s.n.], |
Source Sets | Universidade Estadual Paulista |
Language | Portuguese |
Detected Language | Portuguese |
Type | text |
Format | 91 p. : |
Relation | Sistema requerido: Adobe Acrobat Reader |
Page generated in 0.0022 seconds