A teoria de poda é um caminho para dar uma descrição topologica de famílias de homeomorfismos de superfície. Nesta tese desenvolvemos uma teoria de poda diferenciável. Primeiro definimos discos de poda para o exemplo paradigmático da ferradura de Smale e provamos um teorema de poda diferenciável. Depois, com uma construção similar a derivados de Anosov, extendemos este teorema para difeomorfissmos hiperbólicos. Também aplicamos estas construções ao estudo da família de Hénon real e mostramos como se relaciona esta teoria com a família de Hénon complexa. Assim, provamos a Conjectura da Frente de Poda para alguns parâmetros reais na família de transformações de Hénon. / Pruning is originally a way of giving a topological description of the dynamics of families of surface homeomorphisms. A diferentiable pruning theory is developed here. First pruning discs and the pruning theorem are presented for Smale\'s horseshoe, which is the paradigmatic chaotic dynamical system in dimension 2. Then this is generalized to hyperbolic surface difeomorphisms. This is then combined with complex and numerical techniques to give a computer assisted proof of the Pruning Front Conjecture for certain open sets of (real) parameters in the Hénon family.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-21022011-170822 |
Date | 17 February 2011 |
Creators | Juan Valentin Mendoza Mogollon |
Contributors | André Salles de Carvalho, Philip Lewis Boyland, Daniel Smania Brandão, Isabel Lugão Rios, Fabio Armando Tal |
Publisher | Universidade de São Paulo, Matemática Aplicada, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds