Return to search

Quantum dot-based semiconductor Terahertz transceiver systems

Terahertz (THz) technology is still currently a rapidly developing area of research with applications already demonstrated in the fields of biology, medicine, security, chemical/materials inspection and astrophysics to name a few. The diversity of applications which require the generation and measurement of THz or sub-millimeter (sub-mm) electromagnetic (EM) signals is the result of the vast number of chemical elements and compounds which exhibit molecular transitions and vibrational behavior that occur at frequency ranges corresponding to the so-called 'THz gap', roughly defined as 0.05-10 THz. The THz gap was named as such because of the relative difficulty in generating and analysing EM waves in this frequency band. This was due to the inherent challenges in generating either electrical signals with response periods below 1 picosecond (ps), or optical signals with wavelengths in the far-infrared (FIR) range. High absorption of THz signals in atmosphere via absorption by molecules such as H2O also impeded early developments and is a key issue in THz systems even today. There is now a wide variety of THz system solutions, each of which exhibits a different set of operational advantages and limitations. Arguably, the most well-established THz technique to date is based on the use of photoconductive antennas (PCAs) driven by ultrafast pulsed or dual-wavelength laser systems. This technique is the basis for the work presented in this thesis, which is an investigation into the potential utilisation of quantum dot (QD)-based semiconductor materials and devices in THz systems. This thesis discusses the work carried out in the development of a novel class of PCA devices which were postulated to enable efficient optical-to-THz signal conversion, whilst also overcoming several major limitations normally exhibited by PCA devices such as limited optical wavelength pumping range and thermal breakdown. To summarise briefly, these issues were addressed by considering: the additional pump absorption energy ranges enabled by the inclusion of multiple bandgap-engineered semiconductor materials and quantum-confined structures; the higher thermal conductivity and hence pump tolerance exhibited by relatively high-quality (low defect) absorption layers; and by simultaneously harnessing the ultrafast charge carrier modulation exhibited by the integrated QDs. Additionally, some work was carried out using QD-based lasers as pump sources, with the initial intention to explore the feasibility of a fully QD-based THz transceiver system and draw some conclusions as to the future potential for ultra-compact or even lab-on-chip THz systems, for example.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:590532
Date January 2014
CreatorsLeyman, Ross
PublisherUniversity of Dundee
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://discovery.dundee.ac.uk/en/studentTheses/be4e84c1-7914-4911-bd10-5fcd4bc93551

Page generated in 0.002 seconds