Return to search

Etude de la stratégie de réécriture de termes k-bornée / Study of the k-bounded term rewriting strategy

Nous introduisons la stratégie de réécriture de termes k-bornée (bo(k), pour k entier) pour les systèmes linéaires. Cette stratégie est associée à une classe de systèmes dits k-bornés LBO(k). Nous démontrons que les systèmes de la classe LBO (union des LBO(k) pour tous les k), inversent-préservent la reconnaissabilité. Nous montrons que les différents problèmes de terminaison et d'inverse-terminaison pour la stratégie bo(k) sont décidables et utilisons ce résultat pour démontrer la décidabilité de ces problèmes pour des sous-classes de LBO: les classes de systèmes linéaires fortement k-bornés: LFBO(k). La classe LFBO (union des LFBO(k)) inclut strictement de nombreuses classes de systèmes connues: les systèmes inverses basiques à gauche, linéaires growing, et linéaires inverses Finite-Path-Overlapping. Le problème de l'appartenance à LFBO(k) est décidable alors qu'il ne l'est pas pour LBO(0). Pour les mots, nous prouvons que la stratégie bo(k) préserve l'algébricité. Nous étendons la notion de réécriture k-bornée aux systèmes de réécriture de termes linéaires à gauche. Comme dans le cas linéaire, nous associons à cette stratégie la classe des systèmes linéaires à gauche k-bornés BO(k) qui étend la classe LBO(k). Nous démontrons que les systèmes de cette classe inverse-préservent la reconnaissabilité.Comme dans le cas linéaire, nous définissons ensuite la classe des systèmes fortement kbornés FBO(k), qui étend la classe LFBO(k). Nous montrons que le problème de l'appartenance à FBO(k) est décidable. La classe FBO contient strictement la classe des systèmes growing linéaires à gauche. / We introduce k-bounded term rewriting for linear systems (bo(k), for k integer). This strategy is associated with the class of k-bounded systems LBO(k). We show that the systems in the class LBO (union of the LBO(k) for all k), inverse-preserve recognizability. We show that the problems of termination and inverse-termination for the bo(k) strategy are decidable and use this result to show the decidability of these two problems for subclasses of LBO: the classes of linear systems strongly k-bounded: LFBO(k). The class LFBO (union of the LFBO(k)) includes strictly many known classes: the inverse left-basic systems, the linear growing systems, the linear inverse Finite-Path-Overlapping systems. Membership to LFBO(k) is decidable but this is not hte case for LBO(0). For words, we show that the bo(k) strategy preserves algebricity. We extend k-bounded rewriting to left-linear systems. As in the linear case, we associate a class of systems to the strategy: the class of left-linear kbounded systems BO(k) which extends LBO(k). We show that the systems in BO(k) inversepreserve recognizability. As in the linear case, we define the class of strongly k-bounded systems FBO(k), which extends LFBO(k). Membership to FBO(k) is proved decidable. The FBO class contains stricly the class of left-linear growing systems.

Identiferoai:union.ndltd.org:theses.fr/2014BORD0121
Date01 October 2014
CreatorsSylvestre, Marc
ContributorsBordeaux, Durand, Irène, Senizergues, Géraud
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0035 seconds