Die Messung der räumlich aufgelösten Aktivität von neuronalen Zellverbänden ist ein wichtiges Werkzeug, um die Funktionsweise von Gehirnen zu verstehen. Für diese Arbeit diente die Fruchtfliege Drosophila melanogaster mit ihrer gut beschriebenen Genetik und Neurobiologie als Untersuchungsobjekt. Bei der vorgelegten Arbeit lag eine zweigeteilte Aufgabenstellung vor: Zum einen wurde die Technik des in – vivo Calcium – Imagings mit Hilfe des genetisch codierten Sensors Yellow Cameleon 2.1 am Lehrstuhl komplett neu etabliert, zum anderen wurde mit der neuen Technik das Zusammenspiel der funktionellen Elemente neuronaler Systeme anhand der Fliegenolfaktorik untersucht. Sowohl die Experimente zur Depolarisation durch KCl, als auch die Experimente zur olfaktorischen Codierung, wurden mit dem Calciumsensor Yellow Cameleon 2.1 durchgeführt. Es wurde ausgehend von der Vorgängerversion Yellow Cameleon 2.0 durch gezielte Mutagenese von Sören Diegelmann erstellt. Eine Photomultiplier – basierte in – vitro Funktionsanalyse des rekombinanten Sensorproteins ergab eine Zunahme der Ratio EYFP / ECFP mit steigender Calciumkonzentration. Dabei konnte auch der ratiometrische FRET – Effekt des Cameleons verdeutlicht werden: Mit steigender Calciumkonzentration verschiebt sich das Verhältnis von EYFP – Fluoreszenz zu ECFP – Fluoreszenz zu höheren Ratiowerten. Durch Zugabe des Calciumchelators EGTA konnte außerdem die reversible Arbeitsweise des Sensors nachgewiesen werden. Das in die Fliege eingebrachte Yellow Cameleon 2.1 – Konstrukt wurde mittels der GAL4 – UAS – Technik in verschiedenen olfaktorischen Gehirnzentren exprimiert. Von besonderer Relevanz für die Experimente zur olfaktorischen Codierung war dabei die GAL4 – Treiberlinie GH146. Mit ihrer Hilfe konnte das Fusionsprotein in den olfaktorischen Projektionsneuronen des Fliegengehirns exprimiert, und so die Duftrepräsentation im postsynaptischen Neuropil der Antennalloben bzw. in den präsynaptischen Neuropilen der Calyces und des lateralen Protocerbrums untersucht werden: Die Stimulation von 3 individuellen Fliegen mit den Düften Benzaldehyd, Isoamylacetat und Octanol liefert duftspezifische neuronale Aktivitätsmuster im Antenallobus. Die auf die Duftstimuli mit Calciumsignalen reagierenden Areale haben eine Größe von 10 – 30 µm, liegen also in der Größenordnung von individuellen Glomeruli. Die Duftrepräsentation in den Antennalloben zeigt außerdem einen kombinatorischen Aspekt: Jeder Duft evoziert ein charakteristisches Aktivitätsmuster bestehend aus einem oder mehreren Glomeruli. Die Aktivitätsmuster verschiedener Düfte können sich überlagern, d.h. individuelle Glomeruli können durch verschiedene Düfte aktiviert werden, das gesamte Aktivitätsmuster, d.h. die Summe der aktivierten Glomeruli eines bestimmten Duftes, ist jedoch charakteristisch. Die Duftrepräsentation in den Antennalloben von Drososophila geschieht also in Form eines glomerulären Codes, ein Prinzip der Duftverarbeitung, das auch in anderen Insekten und Vertebraten nachgewiesen werden konnte. Für den Calyx des Pilzkörpers ergaben sich innerhalb eines Individuums, bei wiederholter Stimulation mit demselben Duft, ebenfalls duftspezifische Aktivitätsmuster. Dabei waren die auf den Duftstimulus hin antwortenden neuronalen Areale diskret über den Calyx hinweg verteilt. Insgesamt zeigt das hohe Maß an Reproduzierbarkeit der Aktivitätsmuster für einen gegebenen Duft, dass im Calyx, wie in den Antennalloben, eine duftspezifische räumliche Repräsentation vorliegt. Der kombinatorische Aspekt der Codierung konnte auch hier beobachtet werden. Die einzelnen Spots der im Calyx gemessenen Aktivitätsmuster liegen in der Größenordnung von 5 +/- 2 µm und entsprechen somit in ihrer Größe den elektronenmikroskopisch beschriebenen Microglomeruli. Durch die Calcium – Imaging Experimente am lateralen Protocerebrum konnte nachgewiesen werden, dass die Erhöhung der Duftkonzentration eine räumliche Ausdehnung des aktivierten Neuropils zur Folge hat. Die EYFP –, ECFP – und Ratio – Intensitäten, die aus einer “Region of Interest“ im anterioren Bereich des lateralen Protocerebrums berechnet wurden, zeigen weiterhin, dass mit steigender Duftkonzentration auch die Stärke des Calciumsignals zunimmt. Dabei gibt es zwischen den 4 getesteten Düften statistisch signifikante Unterschiede: Methylcyclohexanol evoziert über den gesamten Verdünnungsbereich hinweg die schwächste neuronale Aktivität, Isoamylacetat evoziert in den Verdünnungsstufen 10-3 und 10-1 die stärkste neuronale Aktivität. D.h. neben der räumlichen Ausdehnung des Signals, führt die Konzentrationserhöhung auch zu einer gesteigerten Intensität des Calciumsignals, wobei sich die Signalintensitäten für verschiedene Düfte und Verdünnungsstufen unterscheiden können. Mit der verwendeten Versuchsanordnung und Datenauswertung, war es jedoch bislang nicht möglich eine räumliche Repräsentation der Düfte im lateralen Protocerebrum nachzuweisen. / Measuring the spatiotemporal activity of neuronal cell populations is an important tool towards a further understanding of brain functions. This thesis investigates the brain activity of the model system Drosophila melanogaster with its well described genetics and neurobiology, thereby consisting of two major parts: On the one hand the in – vivo Calcium – Imaging technique by means of the genetically encoded sensor Yellow Cameleon 2.1, had to be newly established in our laboratory, on the other hand the interaction of functional elements within the neuronal olfactory pathway of the fruitfly was to be examined using this new technique. Both the experiments on KCl – induced depolarization and the experiments on olfactory coding were accomplished with the Yellow Cameleon 2.1 sensor. This molecular probe was generated by Sören Diegelmann by targeted in – vitro mutagenesis of the previous version Yellow Cameleon 2.0. A photomultiplier based in – vitro functional analysis of the recombinant sensor protein resulted in an increase of Calcium signals with rising Calcium ion concentrations, thereby revealing the ratiometric FRET effect of the Cameleons: With rising Calcium concentration the relationship between EYFP – fluorescence and ECFP – fluorescence shifts towards higher ratio values EYFP / ECFP. By application of the Calcium chelator EGTA the reversible function of the sensor could be demonstrated as well. By means of the GAL4 – UAS – technique, the Yellow Cameleon 2.1 construct transformed into the fly`s germline could be expressed in different olfactory brain centers. In the present work the GAL4 – strain GH146 was of special relevance for the experiments on olfactory coding. The GH146 – driven Cameleon 2.1 line expresses the sensor protein in olfactory projection neurons of the fly`s brain and therefore permits the examination of odorant coding within the postsynaptic neuropile of the antennal lobes, the presynaptic neuropiles of the calyces and the lateral protocerebrum, respectively: The stimulation of 3 individual flies with the odorants benzaldehyde, isoamylacetate and octanol revealed odorant – specific spatial activity patterns within the antennal lobes. The areas activated by the odorant stimulation were of similar size as individual glomeruli (~10 – 30 µm). The glomerular – like odor representation in the antennal lobes shows a combinatorial aspect: Each odorant induces a characteristic acitivity pattern consisiting of one or more glomeruli. Activity patterns evoked by different odorants can overlap, i.e. individual glomeruli can be activated by different odorants. In spite of from this combinatorial aspect, the activity pattern for a given odorant remains specific. Odorants are therefore represented in a glomerular code within the antennal lobes of Drosophila. The glomerular code represents an olfactory processing principle which could be demonstrated for other insects and vertebrates as well. Repeated stimulation of an individual fly with the same odorant revealed that intraindividual optical recordings from the mushroom body calyx were reproducible and generated odorant – specific activity patterns as well. The response patterns to different odorants were clearly spatially organized, with discrete areas of activity distributed over the calyx area. The reproducibility of the different patterns strongly suggest that odorant representations within the calyx are spatially specific, i. e. the spatial glomerular code of the antennal lobes could be somehow transformed into a spatial odorant – specific acitvity pattern in the calyx. Interestingly, the combinatorial aspect of olfactory encoding could be seen in the calyces as well. The spots of activity observed in the calyx are within the range of 5 +/- 2 µm and thus correspond in size to the boutons forming the presynaptic part of the so called microglomeruli described by electron microscopy. The Calcium – Imaging experiments at the level of the lateral protocerebrum showed a spatial expansion of the activated neuropiles with increasing odorant concentrations. The EYFP – , ECFP – intensities and their ratio values, which were computed from a region of interest within the anterior range of the lateral protocerbrum, reveal an increase in signal intensity with rising odorant concentrations. Within this reference the 4 odorants examined show satistically significant differences: methlycyclohexanol evoked the weakest Calcium signals over the entire dilution range, isoamylacetate evoked the strongest Calcium signals at the dilutions 10-3 and 10-1. This means that apart from the spatial expansion of the signal, the concentration increase leads to an increase in signal intensity, while the signal intensities for different odorants at a given dilution can differ. However, using the described experimental assembly and data evaluation, it was not possible to prove a spatial odorant representation within the lateral protocerebrum.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:987 |
Date | January 2004 |
Creators | Spall, Thomas |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0091 seconds