Le diagnostic de fautes est essentiel pour atteindre l'objectif de temps avant mise sur le marché (time to market) des premiers prototypes de circuits intégrés. Une autre application du diagnostic est dans l'environnement de production. Les informations du diagnostic sont très utiles pour les concepteurs de circuits afin d'améliorer la conception et ainsi augmenter le rendement de production. Dans le cas où le circuit est une partie d'un système d'importance critique pour la sûreté (e.g. automobile, aérospatial), il est important que les fabricants s'engagent à identifier la source d'une défaillance dans le cas d'un retour client pour ensuite améliorer l'environnement de production afin d'éviter la récurrence d'un tel défaut et donc améliorer la sûreté. Dans le cadre de cette thèse, nous avons développé une méthodologie de modélisation et de diagnostic de fautes pour les circuits analogiques/mixtes. Une nouvelle approche basée sur l'apprentissage automatique a été proposée afin de considérer les fautes catastrophiques et paramétriques en même temps dans le diagnostic. Ensuite, nous avons focalisé sur le diagnostic de défauts spot qui sont considérés comme le mécanisme de défauts principal de circuits intégrés. Enfin, la méthodologie du diagnostic proposée a été validée par les données de circuits défectueux fournies par NXP Semiconductors - Netherlands. Mots clés: Diagnostic de fautes, modélisation de fautes, test analogique, analyse de défauts, apprentissage automatique
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00670338 |
Date | 16 November 2011 |
Creators | Huang, Ke |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds