Return to search

Etude de la pertinence des paramètres stochastiques sur des modèles de Markov cachés

Le point de départ de ce travail est la thèse réalisée par Pascal Vrignat sur la modélisation de niveaux de dégradation d'un système dynamique à l'aide de Modèles de Markov Cachés (MMC), pour une application en maintenance industrielle. Quatre niveaux ont été définis : S1 pour un arrêt de production et S2 à S4 pour des dégradations graduelles. Recueillant un certain nombre d'observations sur le terrain dans divers entreprises de la région, nous avons réalisé un modèle de synthèse à base de MMC afin de simuler les différents niveaux de dégradation d'un système réel. Dans un premier temps, nous identifions la pertinence des différentes observations ou symboles utilisés dans la modélisation d'un processus industriel. Nous introduisons ainsi le filtre entropique. Ensuite, dans un but d'amélioration du modèle, nous essayons de répondre aux questions : Quel est l'échantillonnage le plus pertinent et combien de symboles sont ils nécessaires pour évaluer au mieux le modèle ? Nous étudions ensuite les caractéristiques de plusieurs modélisations possibles d'un processus industriel afin d'en déduire la meilleure architecture. Nous utilisons des critères de test comme les critères de l'entropie de Shannon, d'Akaike ainsi que des tests statistiques. Enfin, nous confrontons les résultats issus du modèle de synthèse avec ceux issus d'applications industrielles. Nous proposons un réajustement du modèle pour être plus proche de la réalité de terrain.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01058784
Date18 December 2013
CreatorsRobles, Bernard
PublisherUniversité d'Orléans
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds