Verification and debug of integrated circuits for embedded applications has grown in importance as the complexity in function has increased dramatically over time. Various modeling and debugging techniques have been developed to overcome the overwhelming challenge. This thesis attempts to address verification and debug methods by presenting an accurate C model at the bit and algorithm level coupled with an implemented Hardware Description Language (HDL). Key concepts such as common signal and variable naming conventions are incorporated as well as a stepping function within the implemented HDL. Additionally, a common interface between low-level drivers and C models is presented for early firmware development and system debug. Finally, selfchecking verification is discussed for delivering multiple test cases along with testbench portability.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1635 |
Date | 01 January 2009 |
Creators | Crutchfield, David Allen |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0019 seconds