Return to search

Refinamento de inferências na distribuição Birnbaum-Saunders generalizada com núcleos normal e t de Student sob censura tipo II

Submitted by Danielle Karla Martins Silva (danielle.martins@ufpe.br) on 2015-03-13T12:46:16Z
No. of bitstreams: 2
tese_larissa_final.pdf: 2339402 bytes, checksum: e15b164d91df893043954285fcb9f7e0 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-13T12:46:16Z (GMT). No. of bitstreams: 2
tese_larissa_final.pdf: 2339402 bytes, checksum: e15b164d91df893043954285fcb9f7e0 (MD5)
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Previous issue date: 2013 / CAPES / Frequentemente temos interesse em realizar inferências, em um determinado modelo, envolvendo
apenas alguns dos seus parâmetros. Tais inferências podem ser feitas através da função de
verossimilhança perfilada. Contudo, alguns problemas podem surgir quando tratamos a função
de verossimilhança perfilada como uma verossimilhança genuína. Com o objetivo de solucionar
estes problemas, vários pesquisadores, dentre eles Barndorff-Nielsen (1983, 1994) e Cox & Reid
(1987, 1992), propuseram modificações à função de verossimilhança perfilada.
O principal objetivo deste trabalho é utilizar a verossimilhança perfilada e seus ajustes propostos
por Barndorff-Nielsen (1983,1994) e Cox & Reid (1987,1992) no aperfeiçoamento de inferências
para a distribuição Birnbaum-Saunders generalizada com núcleos normal e t de Student,
na presença, ou não, de censura tipo II. Mais precisamente obtemos os estimadores de máxima
verossimilhança relacionados às funções de verossimilhança perfilada e perfiladas ajustadas; calculamos
os intervalos de confiança do tipo assintótico, bootstrap percentil, bootstrap BCa e
bootstrap-t e também apresentamos os testes da razão de verossimilhanças ajustados, o teste
bootstrap paramétrico e o teste gradiente. Através de simulações de Monte Carlo avaliamos
os desempenhos dos testes e dos estimadores pontuais e intervalares propostos. Os resultados
evidenciam que tanto os testes quanto os estimadores baseados nas versões modificadas da verossimilhança
perfilada possuem desempenho superior em pequenas amostras quando comparados
com suas contrapartidas não modificadas. Adicionalmente, apresentamos alguns exemplos práticos
para ilustrar tudo o que foi desenvolvido.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/12339
Date31 January 2013
CreatorsBARRETO, Larissa Santana
ContributorsCRIBARI-NETO, Francisco
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguageBreton
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
RightsAttribution-NonCommercial-NoDerivs 3.0 Brazil, http://creativecommons.org/licenses/by-nc-nd/3.0/br/, info:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds