A Visualização Computacional trata de técnicas para representar e interagir graficamente com dados complexos, em geral de alta dimensionalidade. Dados de alta dimensionalidade são caracterizados por pontos representados em espaços vetoriais de alta dimensão, cada coordenada representando um atributo do vetor. Num grande número de aplicações da visualização multidimensional uma medida de similaridade existe entre esses vetores. Técnicas de projeção multidimensional podem ser utilizadas para posicionamento desses dados num plano de forma a facilitar a interpretação das relações de similaridade. Entretanto alguns problemas dessas técnicas comprometem a interpretação dos resultados obtidos. Este trabalho identifica esses problemas e propõe, uma técnica para posicionar os pontos no plano, através da formação de árvores filogenéticas a partir de relações de similaridade. Em geral árvores filogenéticas são utilizadas para codificação de relações de ancestralidade. Um algoritmo de geração e um algoritmo de traçado dessas árvores foram implementados no contexto do sistema PEx (Projection Explorer) e a solução é comparada com a funcionalidade das projeções na interpretação de dados multidimensionais em geral e, em particular, na representação de coleções de documentos, uma aplicação bastante estratégica da visualização computacional e da mineração visual de dados / Computational Visualization is concerned with graphical representation and exploration of complex data, usually bearing high dimensionality. Multidimensional data are characterized by points represented in vector spaces of many dimensions, each coordinate representing an attribute of the vector. In many applications a similarity measure can be found to highlight relationships of proximity between the vectors. In this environment projection techniques offer an alternative to ease interpretation coded by the similarity measures through proximity on the display. They do so by positioning the points on a bidimensional plane. Projection techniques are very useful to display and interact with data, but present some drawbacks that in some cases compromise the interpretation of certain features in data sets. This work discusses such problems and proposes, as an alternative to represent similarity relationships and to provide point placement on a plane, the use of phylogenetic trees, a representation typically employed to represent ancestrality relationships. An algorithm for generation and an algorithm for drawing such trees were implemented in a system called Projection Explorer. The approach is compared to that of multidimensional projections for multidimensional data in general and, in particular, for document data sets, an strategic application for multidimensional visualizations, since text can be represented and interpreted as multi-dimensional entities
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-22012008-111242 |
Date | 01 October 2007 |
Creators | Ana Maria Cuadros Valdivia |
Contributors | Rosane Minghim, Alejandro César Frery Orgambide, Guilherme Pimentel Telles |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0268 seconds