Return to search

Inférence de la structure d'interactions de données bruitées

La science des réseaux est notamment à la recherche de modèles mathématiques capables de reproduire le comportement de systèmes complexes empiriques. Cependant, la représentation usuelle, le graphe, est parfois inadéquate étant donné sa limitation à encoder uniquement les relations par paires. De nombreux travaux récents suggèrent que l'utilisation de l'hypergraphe, une généralisation décrivant les interactions d'ordre supérieur (plus de deux composantes), permet d'expliquer des phénomènes auparavant incompris avec le graphe. Or, la structure de ces réseaux complexes est rarement ou difficilement observée directement. De fait, on mesure plutôt une quantité intermédiaire, comme la fréquence de chaque interaction, pour ensuite reconstruire la structure originale. Bien que de nombreuses méthodes de reconstruction de graphes aient été développées, peu d'approches permettent de retrouver les interactions d'ordre supérieur d'un système complexe. Dans ce mémoire, on développe une nouvelle approche de reconstruction pouvant déceler les interactions connectant trois noeuds parmi des observations dyadiques bruitées. Basée sur l'inférence bayésienne, cette méthode génère la distribution des hypergraphes les plus plausibles pour un jeu de données grâce à un algorithme de type Metropolis-Hastings-within-Gibbs, une méthode de Monte-Carlo par chaînes de Markov. En vue d'évaluer la pertinence d'un modèle d'interactions d'ordre supérieur pour des observations dyadiques, le modèle d'hypergraphe développé est comparé à un second modèle bayésien supposant que la structure sous-jacente est un graphe admettant deux types d'interactions par paires. Les résultats obtenus pour des hypergraphes synthétiques et empiriques indiquent que la corrélation intrinsèque à la projection d'interactions d'ordre supérieur améliore le processus de reconstruction lorsque les observations associées aux interactions dyadiques et triadiques sont semblables. / Network science is looking for mathematical models capable of reproducing the behavior of empirical complex systems. However, the usual representation, the graph, is sometimes inadequate given its limitation to encode only pairwise relationships. Many recent works suggest that the use of the hypergraph, a generalization describing higher-order interactions (more than two components), allows to explain phenomena previously not understood with graphs. However, the structure of these complex networks is seldom or hardly observed directly. Instead, we measure an intermediate quantity, such as the frequency of each interaction, and then reconstruct the original structure. Although many graph reconstruction methods have been developed, few approaches recover the higher-order interactions of a complex system. In this thesis, we develop a new reconstruction approach which detects interactions connecting three vertices among noisy dyadic observations. Based on Bayesian inference, this method generates the distribution of the most plausible hypergraphs for a dataset using a Metropolis-Hastings-within-Gibbs algorithm, a Markov chain Monte Carlo method. In order to evaluate the relevance of a higher-order interaction model for dyadic observations, the developed hypergraph model is compared to a second Bayesian model assuming that the underlying structure is a graph admitting two types of pairwise interactions. Results for synthetic and empirical hypergraphs indicate that the intrinsic correlation to the projection of higher-order interactions improves the reconstruction process when observations associated with dyadic and triadic interactions are similar.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/107424
Date12 November 2023
CreatorsLizotte, Simon
ContributorsAllard, Antoine, Young, Jean-Gabriel
Source SetsUniversité Laval
LanguageFrench
Detected LanguageFrench
TypeCOAR1_1::Texte::Thèse::Mémoire de maîtrise
Format1 ressource en ligne (x, 95 pages), application/pdf
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.002 seconds