Les prévisions relatives trafic de données au sein des systèmes de communications sans-fil suggèrent une croissance exponentielle, principalement alimentée par l'essor de transferts vidéo mobiles. Etant donné la nature soudaine et fluctuante des demandes de transfert vidéo, il faut dès à présent réfléchir à de nouveaux algorithmes d'allocation de ressources performants. En effet, les algorithmes en couche physique traditionnels, qui réalisent de l'allocation de ressources sous l'hypothèse classique que les transmetteurs sont toujours saturés avec des bits d'information, risquent à l'avenir de s'avérer inefficients. Pour cette raison, les algorithmes de demain se doivent d'être dynamiques, dans le sens où ils seront capables de prendre en compte la nature stochastique des fluctuations du trafic de données et qu'ils intégreront des informations issus de processus de couches supérieures.L'idée centrale de cette thèse est de développer des algorithmes, travaillant avec des informations issues de la couche PHY et de la couche NET, dans un scénario Multi-cells et MIMO (Multiple Inputs, Multiple Outputs).Plus particulièrement, nous considérons un réseau de stations de base (BS) équipés avec plusieurs antennes, chargés de servir plusieurs terminaux mobiles équipés d'une seule antenne (UT) dans leurs cellules respectives. Ce qui nous différencie des travaux précédents, c'est que nous tenons compte de l'aléa avec lequel des demandes de transferts peuvent arriver et que, pour cette raison, nous modélisons la formation de queue de données au niveau des stations de base. Dans cette disposition, nous développons plusieurs algorithmes multicouches, réalisant de l'allocation de ressources décentralisée, et ce, dans une optique d'efficacité énergétique. En particulier, il s'agit ici de réaliser des algorithmes réalisant du beamforming de façon décentralisée et capables de contrôler des fluctuations de trafic, des algorithmes optimisant l'efficacité énergétique sous une contrainte de qualité de service moyenne, des algorithmes de planification décentralisés dans des scénarios multi-cellulaires. Dans cette perspective, nous choisissons de recourir non seulement à des outils d'optimisation de la théorie de Lyapunov, mais également à la théorie des matrices aléatoires et à la théorie du contrôle stochastique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00795211 |
Date | 06 December 2012 |
Creators | Lakshminarayana, Subhash |
Publisher | Supélec |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds