Return to search

Ramification modérée pour des actions de schémas en groupes affines et pour des champs quotients

L'objet de cette thèse est de comprendre comment se généralise la théorie de la ramification pour des actions par des schémas en groupes affines avec un intérêt particulier pour la notion de modération. Comme contexte général pour ce résumé, considérons une base affine S := Spec(R) où R est un anneau unitaire, commutatif, X := Spec(B) un schéma affine sur S, G := Spec(A) un schéma en groupes affine, plat et de présentation finie sur S et une action de G sur X que nous noterons (X, G). Enfin, nous notons [X/G] le champ quotient associé à cette action et Y := Spec(BA) où BA est l'anneau des invariants pour l'action (X, G). Supposons de plus que le champ d'inertie soit fini.Comme point de référence, nous prenons la théorie classique de la ramification pour des anneaux munis d'une action par un groupe fini abstrait. Afin de comprendre comment généraliser cette théorie pour des actions par des schémas en groupes, nous considérons les actions par des schémas en groupes constants en se rappelant que la donnée de telles actions est équivalente à celle d'un anneau muni d'une action par un groupe fini abstrait nous ramenant au cas classique. Nous obtenons ainsi dans ce nouveau contexte des notions généralisant l'anneau des invariants en tant que quotient, les groupes d'inertie et toutes leurs propriétés. Le cas non ramifié se généralise naturellement avec les actions libres. En ce qui concerne le cas modéré, qui nous intéresse particulièrement pour cette thèse, deux généralisations sont proposées dans la littérature. Celle d'actions modérées par des schémas en groupes affines introduite par Chinburg, Erez, Pappas et Taylor dans l'article [CEPT96] et celle de champ modéré introduite par Abramovich, Olsson et Vistoli dans [AOV08]. Il a été alors naturel d'essayer de comparer ces deux notions et de comprendre comment se généralisent les propriétés classiques d'objets modérés à des actions par des schémas en groupes affines.Tout d'abord, nous avons traduit algébriquement la propriété de modération sur un champ quotient comme l'exactitude du foncteur des invariants. Ce qui nous a permis d'obtenir aisément à l'aide de [CEPT96] qu'une action modérée définit toujours un champ quotient modéré. Quant à la réciproque, nous avons réussi à l'obtenir seulement lorsque nous supposons de plus que G est fini et localement libre sur S et que X est plat sur Y . Nous pouvons voir que la notion de modération pour l'anneau B muni d'une action par un groupe fini abstrait Γ est équivalente au fait que tous les groupes d'inertie aux points topologiques sont linéairement réductifs si l'on considère l'action par le schéma en groupes constant correspondant à Γ sur X. Il a été donc naturel de se demander si cette propriété est encore vraie en général. Effectivement, l'article [AOV08] caractérise le fait que le champ quotient [X/G] est modéré par le fait que les groupes d'inertie aux points géométriques sont linéairement réductifs.À nouveau, si l'on considère le cas des anneaux munis d'une action par un groupe fini abstrait, il est bien connu que l'action peut être totalement reconstruite à partir de l'action d'un groupe inertie. Lorsque l'on considère le cas des actions par les schémas en groupes constants, cela se traduit comme un théorème de slices, c'est-à-dire une description locale de l'action initiale par une action par un groupe d'inertie. Par exemple, lorsque G est fini, localement libre sur S, nous établissons que le fait qu'une action soit libre est une propriété locale pour la topologie fppf, ce qui peut se traduire comme un théorème de slices. Grâce à [AOV08], nous savons déjà qu'un champ quotient modéré [X/G] est localement isomorphe pour la topologie fppf à un champ quotient [X/H] où H est une extension du groupe d'inertie en un point de Y. Lorsque G est fini sur S, il nous a été possible de montrer que H est aussi un sous-groupe de G.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00858404
Date15 July 2013
CreatorsMarques, Sophie
PublisherUniversité Sciences et Technologies - Bordeaux I
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds