Return to search

Représentation et interaction des preuves en superdéduction modulo / Representation and Interaction of Proofs in Superdeduction Modulo

Cette thèse propose et étudie de nouveaux systèmes déductifs mêlant calculs et déductions. La déduction modulo est un premier formalisme qui traduit un pouvoir calculatoire grâce à un système de réécriture. Nous présentons un paradigme dual appelé superdéduction qui traduit un pouvoir déductif par de nouvelles inférences. Ces pouvoirs calculatoires et déductifs modifient la représentation des preuves et leur interaction par les processus d'élimination des coupures. La normalisation forte ou l'admissibilité des coupures ne sont plus garanties et apparaissent alors comme des propriétés intrinsèques des théories représentées sous forme de systèmes de réécriture. Nous démontrons que certains critères permettent d'assurer ces propriétés, notamment en définissant un langage de termes de preuve pour la superdéduction et en étudiant la permutabilité des inférences en calcul des séquents classique. Notre attention est focalisée sur les calculs des séquents classiques et la représentation des preuves dans de tels systèmes. D'autres formalismes connexes sont envisagés, notamment les réseaux de preuve et le focusing. Nous comparons cette dernière approche à la superdéduction, ce qui nous amène à proposer une refonte du paradigme de superdéduction basée sur un système de multifocusing pour la logique classique. Nous en montrons les effets bénéfiques en démontrant la complétude des systèmes déductifs obtenus. / In this thesis we propose and study several deduction systems that mix deduction and computation. Deduction modulo proposes to translate a computational power through a rewriting system. We present the dual concept called superdeduction. It translates a deductive power into custom inference rules that enrich the deduction system. These computational and deductive powers modify the representation of proofs as well as their interaction through cut-elimination processes. Strong normalisation or cut-admissibility may be lost and therefore appear as intrinsic properties of theories represented as rewriting systems. We prove that certain criteria imply these properties by defining a proof-term language for superdeduction and by studying the permutability of inferences in classical sequent calculus. Our attention is focused on classical sequent calculi and on the representation of proofs in such systems. Other related paradigms are considered, namely proof-nets and focusing. We compare this latter approach with superdeduction. We consequently reforge the superdeduction paradigm on top of a multifocusing system for classical logic. We demonstrate the benefits of this approach by proving the completeness of the obtained deduction systems.

Identiferoai:union.ndltd.org:theses.fr/2010NAN10026
Date12 March 2010
CreatorsHoutmann, Clément
ContributorsNancy 1, Kirchner, Claude
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds