The Toarcian Oceanic Anoxic Event (T-OAE; ~183 million years ago) represents an interval during the Mesozoic when the emplacement of the Karoo-Ferrar Large Igneous Province (LIP) is thought to have resulted in significant environmental change. Associated with this interval was the widespread deposition of organic-rich sediments, carbon cycle and seawater chemistry changes, global warming, the development of marine anoxia, and major extinction events. The majority of studies of this event that have documented these responses have come from the Boreal and Tethyan regions of Europe, thus casting some doubt to the regional versus global significance of the event. Thus my dissertation has sought to reconstruct biogeochemical and paleoenvironmental changes across the T-OAE from a sedimentary succession that was deposited on the margins of a different ocean basin away from the well-studied European successions. Specifically, I have studied the chemostratigraphy of the Fernie Formation of the Western Canada Sedimentary Basin (WCSB), which was deposited on the eastern margin of the Panthalassa Ocean. The Toarcian carbon isotope excursions (CIEs) in the WCSB confirm that these features are global phenomena. I have suggested a new driver for small-scale CIEs observed during the event: the release of wetland-derived methane during progressive global warming. The osmium isotope record and numerical modeling of the osmium cycle suggests that continental weathering rates increased during the T-OAE by 230 – 540%. Rhenium abundance data also suggests that the increased geographic extent of marine anoxia during the T-OAE caused a global drawdown in the seawater rhenium inventory. Iron speciation data are used to reconstruct redox conditions within the WCSB, which suggest ferruginous conditions developed in the more distal locations at the onset of the T-OAE before returning to euxinic (anoxic and sulfidic) conditions. This is likely related to enhanced pyrite burial on a global scale, which caused the drawdown of the seawater sulfate inventory, thus limiting pyrite formation in the distal locations. The proximal setting remained euxinic across the T-OAE, and in all locations the iron speciation data suggest anoxic conditions persistent well after the interval that has been traditionally called the end of the T-OAE. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/81908 |
Date | 02 August 2016 |
Creators | Them II, Theodore Roland |
Contributors | Geosciences, Gill, Benjamin C., Xiao, Shuhai, Romans, Brian W., Eriksson, Kenneth A. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds