Cell competition is a form of cell-cell signalling that results in the elimination of less fit cells from a tissue by their fitter counterparts. I take advantage of an established in vitro model of cell competition using Madin-Darby canine kidney (MDCK) cells to shed insight into the molecular basis of cell competition in epithelial cells. In this system, silencing of the tumour suppressor scribble (scribKD) results in a 'loser' phenotype whereby scribKD cells are specifically eliminated from the monolayer by surrounding wild-type cells. More specifically, scribKD cells are compacted into tight clones through activation of a directed, collective migration in the wild-type population: scribKD are 'mechanical losers' and delaminate and die due to an intrinsic hypersensitivity to high cell density. Remarkably, p53 activation is both necessary and sufficient for this mechanical loser cell status. I first investigate the role of E-, N-, and P-cadherin in the directed migration between scribKD and wild-type cells and in scribKD cell loser status. I show that differential expression of E-cadherin between scribKD losers and wild-type winners is required but not sufficient for directed migration and has no impact on loser cell status. I also show that elevation of neither E-cadherin nor N-cadherin is sufficient to induce directed migration or loser status, but that P-cadherin may play a role in both. I next focus on translating findings about the molecular details of competition from the scribKD set-up into a system where p53 differences alone drive the formation and elimination of mechanical losers. I show that the ROCK - P-p38 - p53 pathway activated in response to mechanical compaction in scribKD cells is conserved in p53-driven losers. In the latter part of my thesis, I characterise the directed migration observed during MDCK competition by drawing parallels to canonical leader-follower migration. Canonical leader cells emerge when epithelial sheets are wounded and, by becoming migratory, drive collective cell migration of follower cells, which results in wound closure. It was not known what confers the leader cell fate. I show that p53 and its effector p21 (and potentially other cyclin-dependent kinase inhibitors) are the key drivers of leader cell migration. I demonstrate that p53-induced leaders use the same molecular pathways that have been shown to drive leader cell migration during wound healing and, in fact, p53 and p21 are also elevated in leaders generated by wounding. Importantly, I establish that p53 activity drives efficient wound closure. Lastly, I show that leader cells are often eliminated by cell competition in the final stages of wound closure, as their elevated p53 mediates their hypersensitivity to density. The model incorporating these data proposes that cellular damage during wounding generates cells with elevated p53, which become leaders and drive wound healing, but these are then cleared once the wound is closed because their high p53 levels cause them to become mechanical losers.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:767925 |
Date | January 2019 |
Creators | Kozyrska, Katarzyna |
Contributors | Piddini, Eugenia |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/289434 |
Page generated in 0.0017 seconds