In this thesis, we investigate optical and electrical properties of dilute nitride semiconductors GaAsN in pulsed magnetic fields up to 62 T. For the most part, the experiments are performed at the Dresden High Magnetic Field Laboratory (HLD).
In the first part of this thesis, the electron effective mass of GaAsN is determined with a direct method for the first time. Cyclotron resonance (CR) absorption spectroscopy is performed in Si-doped GaAsN epilayers with a nitrogen content up to 0.2%. For the CR absorption study, we use the combination of the free-electron laser FELBE and pulsed magnetic fields at the HLD, both located at the Helmholtz-Zentrum Dresden-Rossendorf. A slight increase of the CR electron effective mass with N content is obtained. This result is in excellent agreement with calculations based on the band anticrossing model and the empirical tight-binding method. We also find an increase of the band nonparabolicity with increasing N concentration in agreement with our calculations of the energy dependent momentum effective mass.
In the second part of this thesis, the photoluminescence (PL) characteristics of intrinsic GaAsN and n-doped GaAsN:Si is studied. The PL of intrinsic and very dilute GaAsN is characterized by both GaAs-related transitions and N-induced features. These distinct peaks merge into a broad spectral band of localized excitons (LEs) when the N content is increased. This so-called LE-band exhibits a partially delocalized character because of overlapping exciton wave functions and an efficient interexcitonic population transfer. Merged spectra dominate the PL of all Si-doped GaAsN samples. They have contributions of free and localized excitons and are consequently blue-shifted with respect to LE-bands of intrinsic GaAsN. The highly merged PL profiles of GaAsN:Si are studied systematically for the first time with temperature-dependent time-resolved PL. The PL decay is predominantly monoexponential and has a strong energy dispersion. In comparison to formerly reported values of intrinsic GaAsN epilayers, the determined decay times of GaAsN:Si are reduced by a factor of 10 because of enhanced Shockley-Read-Hall and possibly Auger recombinations.
In the third part of this thesis, intrinsic and Si-doped GaAsN are investigated with magneto-PL in fields up to 62 T. A magneto-PL setup for pulsed magnetic fields of the HLD was built for this purpose. The blue-shift of LE-bands is studied in high magnetic fields in order to investigate its delocalized character. The blue-shift is diminished in intrinsic GaAsN at higher temperatures, which indicates that the interexcitonic population transfer is only active below a critical temperature 20 K < T < 50 K. A similar increase of the temperature has no significant impact on the partially delocalized character of the merged spectral band of GaAsN:Si. We conclude that the interexcitonic transfer of Si-doped GaAsN is more complex than in undoped GaAsN. In order to determine reduced masses of undoped GaAsN and GaAs:Si, the field-induced shift of the free exciton transition is studied in the high-field limit. We find an excellent agreement of GaAs:Si with a formerly published value of intrinsic GaAs which was determined with the same method. In both cases, the reduced mass values are enhanced by 20% in comparison to the accepted reduced mass values of GaAs. The determined GaAsN masses are 1.5 times larger than in GaAs:Si and match the rising trend of formerly reported electron effective masses of GaAsN.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22326 |
Date | 15 February 2017 |
Creators | Eßer, Faina |
Publisher | Helmholtz-Zentrum Dresden - Rossendorf |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:report, info:eu-repo/semantics/report, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:d120-qucosa-237182, qucosa:22349 |
Page generated in 0.0017 seconds