As more and more remotely sensed data becomes available it is becoming increasingly harder to analyse it with the more traditional labour intensive, manual methods. The commonly used techniques, that involve expert evaluation, are widely acknowledged as providing inconsistent results, at best. We need more general techniques that can adapt to a given situation and that incorporate the strengths of the traditional methods, human operators and new technologies. The difficulty in interpreting remotely sensed data is that often only a small amount of data is available for classification. It can be noisy, incomplete or contain irrelevant information. Given that the training data may be limited we demonstrate a variety of techniques for highlighting information in the available data and how to select the most relevant information for a given classification task. We show that more consistent results between the training data and an entire image can be obtained, and how misclassification errors can be reduced. Specifically, a new technique for attribute selection in neural networks is demonstrated. Machine learning techniques, in particular, provide us with a means of automating classification using training data from a variety of data sources, including remotely sensed data and expert knowledge. A classification framework is presented in this thesis that can be used with any classifier and any available data. While this was developed in the context of vegetation mapping from remotely sensed data using machine learning classifiers, it is a general technique that can be applied to any domain. The emphasis of the applicability for this framework being domains that have inadequate training data available.
Identifer | oai:union.ndltd.org:ADTP/235499 |
Date | January 2008 |
Creators | Milne, Linda, Computer Science & Engineering, Faculty of Engineering, UNSW |
Publisher | Publisher:University of New South Wales. Computer Science & Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0019 seconds