The formation of calcium carbonate (CaCO3) (i.e. scale) in potable water systems has long been a concern in water treatment and distribution. A literature review reveals that CaCO3 scaling issues are re-emerging due to climate change, temperature increases in hot water systems and lower use of scaling and corrosion inhibitors. Moreover, we have gathered insights that suggest CaCO3 coatings can be beneficial and stop pipeline leaks via self-repair or clogging. Ironically, the actions we are taking to increase the lifespan of distribution systems (i.e. adding corrosion inhibitors) might have worsened leaks and pipe lifespans due to interference with self-repair. The increasing occurrence of scaling coupled with gaps in knowledge over CaCO3 formation in water systems make revisiting this topic timely.
The concept of autogenous repair by clogging with inert particles was examined using silica and alumina. Small 250 m diameter pinhole leaks were simulated in bench-scale water recirculation systems. Silica and alumina particles were added to solutions ranging from high to low ionic strength to determine the impact of water quality on leak repair. Size distribution and zeta potential of the particles were measured. Silica particles were practically unchanged by the different solution chemistries while the size and zeta potential of alumina particles varied. The rate of clogging with silica particles was not impacted by water chemistry. Alumina particles with a positive charge clogged 100% of the leaks while negatively charged alumina could not clog 100%. Very small alumina particles (4.1 m) stayed suspended but were unable to clog leaks. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/81180 |
Date | 20 June 2016 |
Creators | Richards, Colin Scott |
Contributors | Civil and Environmental Engineering, Edwards, Marc A., Wang, Fei, Sinha, Sunil Kumar |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.003 seconds