Return to search

An improved least squares voltage phasor estimation technique to minimize the Impact of CCVT transients in protective relaying

Power systems are protected by numerical relays that detect and isolate faults that may occur on power systems. The correct operation of the relay is very important to maintain the security of the power system. <p>Numerical relays that use voltage measurements from the power system provided by coupling capacitor voltage transformers (CCVT) have sometimes difficulty in correctly identifying a fault in the protected area. The fundamental frequency voltage phasor resulting from these CCVT measurements may result in a deviation from the true value and therefore may locate this phasor temporarily in the incorrect operating region. This phasor deviation is due to the CCVT behavior and the CCVT introduces spurious decaying and oscillating transient signal components on top of the original voltage received from the power system in response to sudden voltage changes produced during faults. Most of the existing methods for estimating the voltage phasor do not take advantage of the knowledge of the CCVT behavior that can be obtained from its design parameters.<p>A new least squares error method for phasor estimation is presented in this thesis, which improves the accuracy and speed of convergence of the phasors obtained, using the knowledge of the CCVT behavior. The characteristics of the transient signal components introduced by the CCVT, such as frequencies and time constants of decay, are included in the description of the curve to be fitted, which is required in a least squares fitting technique. Parameters such as window size and sampling rate for optimum results are discussed.<p>The method proposed is evaluated using typical power systems, with results that can be compared to the response if an ideal potential transformer (PT) were used instead of a CCVT. The limitations of this method are found in some specific power system scenarios, where the natural frequencies of the power system are close to that of the CCVT, but with longer time constants. The accuracy with which the CCVT parameters are known is also assessed, with results that show little impact compared to the improvements achievable.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:SSU.etd-09212006-113900
Date21 September 2006
CreatorsPajuelo, Eli Fortunato
ContributorsSachdev, Mohinder S., Karki, Rajesh, Gokaraju, Ramakrishna, Dinh, Anh van, Chen, X. B. (Daniel), Teng, Hsiang-Yung (Daniel)
PublisherUniversity of Saskatchewan
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-09212006-113900/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.002 seconds