As electrical devices shrink to the atomic scale, it is expected that Moore's law will soon be obsolete for semiconductor devices. In 1974, Avriam and Ratner predicted that organic devices could replace semiconductor technology, leading to extensive research on molecular-based organic devices. This dissertation delves into the theoretical frameworks used to examine the transport in molecular junctions and aims to enhance our comprehension of charge transport and conduction properties. The studies presented in this thesis illustrates that a molecule's alteration by just a single atom can change it from an insulator to a conductor, and also that, by fine-tuning the molecule-electrode coupling strength and the tunneling distance in a molecular junction, the mechanism of charge transport across molecular wires can be switched between the normal and Inverted Marcus regions. The dissertation also presents molecular devices that function as reliable electrical switches, both static and dynamic. The findings of this research provide evidence of the feasibility of organic devices, including rectifiers and switches, with applications ranging from traditional semiconductor device replacement to neuromorphic computing.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd2020-2872 |
Date | 15 August 2023 |
Creators | Adoah, Francis |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations, 2020- |
Page generated in 0.0032 seconds