This report presents an initial design effort for a high-speed, constant Frequency data extractor, which can be used to identify and track a particular constant frequency signal in the presence of other signals. Several factors must be included in the design considerations. The detection and acquisition of the correct signal should be accomplished at high speed to remain as close as possible to real time. Once detection has occurred, the system should generate a track-predict gate signal that enables the input line only when the real input pulse is expected. If track is lost, which happens whenever the track-predict gate and input pulse do not occur simultaneously, the initial detection method must be re-entered. The detectable frequency should be selectable over a wide range of values. Furthermore, the system should be able to detect and acquire the desired signal in the presence of large numbers of interfering signals, yet be flexible enough to adapt easily to other pulse modulation methods. Because of the above design factors as well as speed, size, and cost, a high-speed bipolar microprocessor was selected for this system implementation. A microprocessor allows most of the detection and acquisition to be accomplished in the software, thus making the system very adaptable to the host system's requirements.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:rtd-1173 |
Date | 01 January 1975 |
Creators | Persin, Lenard Jay |
Publisher | Florida Technological University |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Retrospective Theses and Dissertations |
Rights | Public Domain |
Page generated in 0.8464 seconds