Return to search

Stochastic simulation of near-surface atmospheric forcings for distributed hydrology / Simulation stochastique des forçages atmosphériques utiles aux modèles hydrologiques spatialisés

Ce travail de thèse propose de nouveaux concepts et outils pour des activités de simulation stochastique du temps ciblant les besoins spécifiques de l'hydrologie. Nous avons utilisé une zone climatique contrastée dans le sud-est de la France, les Cévennes-Vivarais, qui est très attractive pour les aléas hydrologiques et les changements climatiques.Notre point de vue est que les caractéristiques physiques (humidité du sol, débit) liées aux préoccupations quotidiennes sont directement liées à la variabilité atmosphérique à l'échelle des bassins. Pour la modélisation de multi-variable, la covariabilité avec les précipitations est d'abord considérée.La première étape du thèse est dédiée à la prise en compte de l'hétérogénéité de la précipitation au sein du simulateur de pluie SAMPO [Leblois et Creutin, 2013]. Nous regroupons les pas de temps dans les types de pluie qui sont organisés dans le temps. Deux approches sont testées pour la simulation: un modèle semi-markovienne et un modèle de ré-échantillonnage pour la séquence des types de pluie historiques. Grâce au regroupement, toutes sortes de précipitations sont desservies par un type de pluie spécifique. Dans une zone plus vaste, où l'hypothèse d'homogénéité climatique n'est plus valide, une coordination doit être introduite entre les séquences de types de pluie sur les sous-zones délimitées, en formant à plus grande échelle.Nous avons d'abord étudié une coordination de modèle de Markov, en appliquant des durées de séjour observées par un algorithme glouton. Cet approche respecte les accumulations de longue durée et la variabilité interannuelle, mais les valeurs extrêmes de précipitation sont trop faibles. En revanche, le ré-échantillonnage est plus facile à mettre en œuvre et donne un comportement satisfaisant pour la variabilité à court terme. Cependant, il manque une variabilité inter-annuelle. Les deux accès souffrent de la délimitation stricte des zones homogènes et des types de précipitations homogènes.Pour ces raisons, une approche complètement différente est également envisagée, où les pluies totales sont modélisées conjointement en utilisant la copule, puis désagrégés sur la petite échelle en utilisant une simulation conditionnelle géostatistique.Enfin, la technique de la copule est utilisée pour relier les autres variables météorologiques (température, rayonnement solaire, humidité, vitesse du vent) aux précipitations. Puisque la modélisation multivariée vise à être pilotée par la simulation des précipitations, la copule doit être exécutée en mode conditionnel. La boîte à outils réalisée a déjà été utilisée dans des explorations scientifiques, elle est maintenant disponible pour tester aux applications réelles. En tant qu'approche pilotée par les données, elle est également adaptable à d'autres conditions climatiques. / This PhD work proposes new concepts and tools for stochastic weather simulation activities targeting the specific needs of hydrology. We used, as a demonstration, a climatically contrasted area in the South-East of France, Cévennes-Vivarais, which is highly attractive to hydrological hazards and climate change.Our perspective is that physical features (soil moisture, discharge) relevant to everyday concerns (water resources assessment and/or hydrological hazard) are directly linked to the atmospheric variability at the basins scale, meaning firstly that relevant time and space scales ranges must be respected in the rainfall simulation technique. Since hydrological purposes are the target, other near-surface variates must be also considered. They may exhibit a less striking variability, but it does exist. To build the multi-variable modeling, co-variability with rainfall is first considered.The first step of the PhD work is dedicated to take into account the heterogeneity of the precipitation within the rainfall simulator SAMPO [Leblois and Creutin, 2013]. We cluster time steps into rainfall types organized in time. Two approaches are tested for simulation: a semi-Markov simulation and a resampling of the historical rainfall types sequence. Thanks to clustering, all kind of rainfall is served by some specific rainfall type. In a larger area, where the assumption of climatic homogeneity is not considered valid, a coordination must be introduced between the rainfall type sequences over delineated sub-areas, forming rainy patterns at the larger scale.We first investigated a coordination of Markov models, enforcing observed lengths-of-stay by a greedy algorithm. This approach respects long duration aggregates and inter-annual variability, but the high values of rainfall are too low. As contrast, the joint resampling of historically observed sequences is easier to implement and gives a satisfactory behavior for short term variability. However it lacks inter-annual variability.Both approaches suffer from the strict delineation of homogeneous zones and homogeneous rainfall types.For these reasons, a completely different approach is also considered, where the areal rainfall totals are jointly modeled using a spatio-temporal copula approach, then disaggregated to the user grid using a non-deterministic, geostatistically-based conditional simulation technique. In the copula approach, the well-known problem of rainfall having atom at zero is handled in replacing historical rainfall by an appropriated atmospheric based rainfall index having a continuous distribution. Simulated values of this index can be turned to rainfall by quantile-quantile mapping.Finally, the copula technique is used to link other meteorological variables (i.e. temperature, solar radiation, humidity, wind speed) to rainfall. Since the multivariate simulation aims to be driven by the rainfall simulation, the copula needs to be run in conditional mode. The achieved toolbox has already been used in scientific explorations, it is now available for testing in real-size application. As a data-driven approach, it is also adaptable to other climatic conditions. The presence of atmospheric precursors a large scale values in some key steps may enable the simulation tools to be converted into a climate simulation disaggregation.

Identiferoai:union.ndltd.org:theses.fr/2018GREAU005
Date01 February 2018
CreatorsChen, Sheng
ContributorsGrenoble Alpes, Leblois, Etienne, Anquetin, Sandrine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds