Return to search

Random Vector Generation on Large Discrete Spaces

This dissertation addresses three important open questions in the context of generating random vectors having discrete support. The first question relates to the "NORmal To Anything" (NORTA) procedure, which is easily the most widely used amongst methods for general random vector generation. While NORTA enjoys such popularity, there remain issues surrounding its efficient and correct implementation particularly when generating random vectors having denumerable support. These complications stem primarily from having to safely compute (on a digital computer) certain infinite summations that are inherent to the NORTA procedure. This dissertation addresses the summation issue within NORTA through the construction of easily computable truncation rules that can be applied for a range of discrete random vector generation contexts.

The second question tackled in this dissertation relates to developing a customized algorithm for generating multivariate Poisson random vectors. The algorithm developed (TREx) is uniformly fast—about hundred to thousand times faster than NORTA—and presents opportunities for straightforward extensions to the case of negative binomial marginal distributions.

The third and arguably most important question addressed in the dissertation is that of exact nonparametric random vector generation on finite spaces. Specifically, it is wellknown that NORTA does not guarantee exact generation in dimensions higher than two. This represents an important gap in the random vector generation literature, especially in view of contexts that stipulate strict adherence to the dependency structure of the requested random vectors. This dissertation fully addresses this gap through the development of Maximum Entropy methods. The methods are exact, very efficient, and work on any finite discrete space with stipulated nonparametric marginal distributions. All code developed as part of the dissertation was written in MATLAB, and is publicly accessible through the Web site https://filebox.vt.edu/users/pasupath/pasupath.htm. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/40277
Date17 December 2010
CreatorsShin, Kaeyoung
ContributorsIndustrial and Systems Engineering, Pasupathy, Raghu, Taaffe, Michael R., Nachlas, Joel A., Sarin, Subhash C.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationdissertation_Kaeyoung_Shin.pdf

Page generated in 0.0019 seconds