This licentiate thesis deals with quantum chemistry methods for large systems. In particular, the thesis focuses on the efficient construction of the Coulomb and exchange matrices which are important parts of the Fock matrix in Hartree--Fock calculations.The methods described are also applicable in Kohn--Sham Density FunctionalTheory calculations, where the Coulomb and exchange matrices areparts of the Kohn--Sham matrix. Screening techniques for reducing the computational complexity of bot Coulomb and exchange computations are discussed, as well as the fast multipole method, used for efficient computation of the Coulomb matrix. The thesis also discusses how sparsity in the matrices occurring in Hartree--Fock and Kohn--Sham Density Functional Theory calculations can be used to achieve more efficient storage of matrices as well as more efficient operations on them. As an example of a possible type of application, the thesis includes a theoretical study of Heisenberg exchange constants, using unrestricted Kohn--Sham Density Functional Theory calculations. / QC 20101123
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4247 |
Date | January 2006 |
Creators | Rudberg, Elias |
Publisher | KTH, Skolan för bioteknologi (BIO), Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds