Return to search

A gauge-invariant, symmetry-preserving truncation of JIMWLK

The colour glass condensate captures quantum chromodynamics in its application to high-energy collider experiments in the spirit of an effective field theory. In deeply inelastic lepton-hadron scattering experiments, as well as in hadron-hadron collisions, the internal degrees of freedom of in-state hadrons are dominated by a dense medium of gluonic matter called the colour glass condensate. Interactions with this medium by some (dilute) probe are most naturally described in terms of Wilson-lines and their correlators. The energy-dependence of these correlators is given by the JIMWLK (Jalilian-Marian+Iancu+McLerran+Weigert+Leonidov+Kovner) equa- tion which, when applied to a correlator, generates an infinite tower of coupled Dyson-Schwinger- like equations referred to as a Balitsky Hierarchy. In this thesis, I present a novel method for truncating, in a gauge-invariant and symmetry- preserving manner, the Balitsky hierarchy associated with matrices of Wilson-line correlators. This truncation is realized by parameterizing the energy-dependence of the symmetric and anti- symmetric parts of these matrices independently via energy-evolution operators which evolve ini- tial conditions in a manner akin to the time-evolution of Hermitian operators in the Heisenberg picture of quantum mechanics. These energy-evolution operators are path-ordered exponentials whose exponents are expanded in terms of energy-dependent "colour structure functions". I show how the properties of contributions to the expansion of these exponents (at each order in the expansion) are constrained by the group theory of SU(Nc).

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/27998
Date January 2018
CreatorsMoerman, RobertWilliam
ContributorsWeigert, Heribert
PublisherUniversity of Cape Town, Faculty of Science, Department of Physics
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeMaster Thesis, Masters, MSc
Formatapplication/pdf

Page generated in 0.0022 seconds