In response to the massive amounts of data that make up a large number of bioinformatics datasets, it has become increasingly necessary for researchers to use computers to aid them in their endeavors. With difficulties such as high dimensionality, class imbalance, noisy data, and difficult to learn class boundaries, being present within the data, bioinformatics datasets are a challenge to work with. One potential source of assistance is the domain of data mining and machine learning, a field which focuses on working with these large amounts of data and develops techniques to discover new trends and patterns that are hidden within the data and to increases the capability of researchers and practitioners to work with this data. Within this domain there are techniques designed to eliminate irrelevant or redundant features, balance the membership of the classes, handle errors found in the data, and build predictive models for future data. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_31343 |
Contributors | Dittman, David (author), Khoshgoftaar, Taghi M. (Thesis advisor), Florida Atlantic University (Degree grantor), College of Engineering and Computer Science, Department of Computer and Electrical Engineering and Computer Science |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Format | 157 p., application/pdf |
Rights | Copyright © is held by the author, with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0018 seconds