Nowadays, many applications are continuously generating large-scale geospatial data. Vehicle GPS tracking data, aerial surveillance drones, LiDAR (Light Detection and Ranging), world-wide spatial networks, and high resolution optical or Synthetic Aperture Radar imagery data all generate a huge amount of geospatial data. However, as data collection increases our ability to process this large-scale geospatial data in a flexible fashion is still limited. We propose a framework for processing and analyzing large-scale geospatial and environmental data using a “Big Data” infrastructure. Existing Big Data solutions do not include a specific mechanism to analyze large-scale geospatial data. In this work, we extend HBase with Spatial Index(R-Tree) and HDFS to support geospatial data and demonstrate its analytical use with some common geospatial data types and data mining technology provided by the R language. The resulting framework has a robust capability to analyze large-scale geospatial data using spatial data mining and making its outputs available to end users.
Identifer | oai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-3356 |
Date | 16 December 2016 |
Creators | Yang, Zhao |
Publisher | ScholarWorks@UNO |
Source Sets | University of New Orleans |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of New Orleans Theses and Dissertations |
Page generated in 0.002 seconds